def pdiff_xy ( nr, nz, r, z, f ): # Get field components dfdR = numpy.zeros((nr, nz)) dfdZ = numpy.zeros((nr, nz)) for i in range (nz) : dfdR[:,i] = deriv(r, f[:,i]) for i in range (nr) : dfdZ[i,:] = deriv(z, f[i,:]) return Bunch(r=dfdR, z=dfdZ, phi=0.0)
def pdiff ( nr, nz, r, z, f): print "Calculating DCT..." dctf= dct2dslow( f ) print "Finished DCT" drdi = deriv(r) dzdi = deriv(z) # Get field components dfdR = numpy.zeros((nr, nz)) dfdZ = numpy.zeros((nr, nz)) for i in range (nr) : for j in range (nz) : g = local_gradient(dctf, i, j, status=None) status=g.status dfdr=g.dfdr[0][0] dfdz=g.dfdz[0][0] # dfd* are derivatives wrt the indices. Need to divide by dr/di etc dfdR[i,j] = dfdr/drdi[i] dfdZ[i,j] = dfdz/dzdi[j] return Bunch(r=dfdR, z=dfdZ, phi=0.0)
def new_hfunc ( h, psi, a, b, h0, fixpos ): # global psi, fixpos, h0, a, b if fixpos == 0 : h2 = numpy.append(h0, h) elif fixpos == numpy.size(psi)-1 : h2 = numpy.append(h, h0) else: h2 = numpy.append(numpy.append(h[0:(fixpos)], h0), h[fixpos::]) f = a*h2 + b*deriv( h2, psi) if fixpos == 0 : f = f[1::] elif fixpos == numpy.size(psi)-1 : f = f[0:(numpy.size(f)-1)] else: f = numpy.append(f[0:(fixpos)], f[(fixpos+1)::]) return f
def curvature( nx, ny, Rxy, Zxy, BRxy, BZxy, BPHIxy, PSIxy, THETAxy, hthexy, CURLB=None, JXB=None, CURVEC=None, BXCURVEC=None, BXCV=None, DEBUG=None, mesh=None): #; #; Calculate the magnetic field curvature and other related quantities #;-------------------------------------------------------------------- print 'Calculating curvature-related quantities...' #;;-vector quantities are stored as 2D arrays of structures {r,phi,z} vec=Bunch( r=0.,phi=0.,z=0.) curlb=numpy.tile(vec,(nx,ny)) jxb=numpy.tile(vec,(nx,ny)) curvec=numpy.tile(vec,(nx,ny)) bxcurvec=numpy.tile(vec,(nx,ny)) bxcv=Bunch() bxcv.psi=numpy.zeros((nx,ny)) bxcv.theta=numpy.zeros((nx,ny)) bxcv.phi=numpy.zeros((nx,ny)) status = gen_surface(mesh=mesh) # Start generator while True: period, yi, xi, last = gen_surface(period=None, last=None, xi=None) nys = numpy.size(yi) x=xi # Get vector along the surface if period ==1 : dr = fft_deriv(Rxy[x,yi]) dz = fft_deriv(Zxy[x,yi]) else: dr = deriv(Rxy[x,yi]) dz = deriv(Zxy[x,yi]) dl = numpy.sqrt(dr**2 + dz**2) dr = dr / dl dz = dz / dl for j in range (nys) : y = yi[j] if period : yp = yi[ (j+1) % nys ] ym = yi[ (j-1+nys) % nys ] else: yp = yi[ numpy.min([j+1 , nys-1]) ] ym = yi[ numpy.max([j-1 , 0]) ] grad_Br = pdiff_rz(Rxy, Zxy, BRxy, x, y, yp, ym) grad_Bz = pdiff_rz(Rxy, Zxy, BZxy, x, y, yp, ym) grad_Bphi = pdiff_rz(Rxy, Zxy, BPHIxy, x, y, yp, ym) grad_Psi = pdiff_rz(Rxy, Zxy, PSIxy, x, y, yp, ym) #grad_Theta = pdiff_rz(Rxy, Zxy, THETAxy, x, y, yp, ym) grad_Theta = Bunch( r=dr[j]/hthexy[x,y], z=dz[j]/hthexy[x,y], phi=0.0 ) grad_Phi=Bunch( r=0.0,z=0.0,phi=1./Rxy[x,y] ) #-gradient of the toroidal angle vecR=Bunch( r=Rxy[x,y],z=Zxy[x,y] ) vecB=Bunch( r=BRxy[x,y],z=BZxy[x,y],phi=BPHIxy[x,y] ) curlb[x,y]=curlcyl(vecR, vecB, grad_Br, grad_Bphi, grad_Bz) jxb[x,y]=xprod(curlb[x,y], vecB) #-magnitude of B at 5 locations in cell bstrength = numpy.sqrt(BRxy**2 + BZxy**2 + BPHIxy**2) #-unit B vector at cell center vecB_unit=Bunch( r=BRxy[x,y]/bstrength[x,y], z=BZxy[x,y]/bstrength[x,y], phi=BPHIxy[x,y]/bstrength[x,y] ) #-components of gradient of unit B vector at 5 locations in cell grad_Br_unit = pdiff_rz(Rxy, Zxy, BRxy/bstrength, x, y, yp, ym) grad_Bz_unit = pdiff_rz(Rxy, Zxy, BZxy/bstrength, x, y, yp, ym) grad_Bphi_unit = pdiff_rz(Rxy, Zxy, BPHIxy/bstrength, x, y, yp, ym) #-curl of unit B vector at cell center curlb_unit=curlcyl(vecR, vecB_unit, grad_Br_unit, grad_Bphi_unit, grad_Bz_unit) #-curvature vector at cell center curvec[x,y]=xprod(vecB_unit,curlb_unit,minus='MINUS') #-unit b cross curvature vector at cell center bxcurvec[x,y]=xprod(vecB_unit,curvec[x,y]) #-calculate bxcurvec dotted with grad_psi, grad_theta, and grad_phi bxcv.psi[x,y]=dotprod(bxcurvec[x,y],grad_Psi) bxcv.theta[x,y]=numpy.real(dotprod(bxcurvec[x,y],grad_Theta)) bxcv.phi[x,y]=dotprod(bxcurvec[x,y],grad_Phi) if last==1 : break # if DEBUG : sys.exit() print '...done' return bxcv
def follow_gradient( interp_data, R, Z, ri0, zi0, ftarget, ri, zi, status=0, boundary=None, fbndry=None, ibndry=None ): global rd_com, idata, lastgoodf, lastgoodpos, Rpos, Zpos, ood, tol, Ri, Zi, dR, dZ tol = 0.1 Rpos = R Zpos = Z Ri=numpy.arange(Rpos.size).astype(float) Zi=numpy.arange(Zpos.size).astype(float) dR=deriv(Rpos) dZ=deriv(Zpos) ibndry = -1 idata = interp_data if boundary != None : bndry = boundary ri0c = ri0 zi0c = zi0 else: bndry = 0 ood = 0 if ftarget==None : print ftarget # Get starting f out=local_gradient( interp_data, ri0, zi0, status=status, f=0., dfdr=None, dfdz=None) status=out.status f0=out.f if status == 1 : ri = ri0 zi = zi0 status = 1 return Bunch(status=status, ri=ri, zi=zi) fmax = ftarget # Target (with maybe boundary in the way) # CATCH, theError # try : # Call LSODE to follow gradient rzold = [ri0, zi0] rcount = 0 # while True: #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ # toggle this for lsode solver = lsode(radial_differential, f0, rzold) rznew=solver.integrate(ftarget) nsteps = solver.steps #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ # toggle this for odeint # get the value out of a list # x0 = chain.from_iterable(f0) # x0 = list(x0)[0] # # # print x0, ftarget # solode=odeint(radial_differential,rzold,[x0,ftarget],full_output=True) # # rznew=solode[0][1,:] # nsteps=solode[1]['nst'][0] #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ lstat=0 # print 'nsteps=',nsteps #print rzold, rznew # #sys.exit() # # # if nsteps > 100 : lstat = -1 # if lstat == -1 : # print " -> Excessive work "+str(f0)+" to "+str(ftarget)+" Trying to continue..." # lstat = 2 # continue # rcount = rcount + 1 # if rcount > 3 : # print " -> Too many repeats. Giving Up." # # ri = lastgoodpos[0] # zi = lastgoodpos[1] # fmax = lastgoodf # # return Bunch(status=status,ri=ri,zi=zi) # # # Get f at this new location # out=local_gradient( interp_data, rznew[0], rznew[1], status=status, f=f0, dfdr=None, dfdz=None) # status=out.status # f0=out.f # # if status == 1 : # ri = ri0 # zi = zi0 # status = 1 # return Bunch(status=status, rinext=ri, zinext=zi) # # rzold = rznew # # # else : # print "I break" # break # # print 'am I here?' # # if status==0: # print 'I break from try?' # break # # if lstat < 0 : # print "Error in LSODE routine when following psi gradient." # print "LSODE status: ", lstat # #STOP # # # except Exception as theError: # print theError ri = rznew[0] zi = rznew[1] # else: # # An error occurred in LSODE. # # lastgoodf contains the last known good f value # #PRINT, "CAUGHT ERROR "+!ERROR_STATE.MSG # #CATCH, /cancel # ri = lastgoodpos[0] # zi = lastgoodpos[1] # fmax = lastgoodf # if ood : # # Gone Out Of Domain # status = 2 # fbndry = lastgoodf # #PRINT, "Out of domain at f = ", fbndry # # Repeat to verify that this does work # rzold = [ri0, zi0] # try : # fbndry = lastgoodf - 0.1*(ftarget - f0) # if theError != 0 : # print " Error again at ", fbndry # # # solver=lsode(radial_differential, f0, rzold) # rznew=solver.integrate(fbndry - f0) # except Exception as theError: # print theError # # return Bunch(status=status, rinext=ri, zinext=zi) # # # Otherwise just crossed a boundary # # #CATCH, /cancel #if boundary != None: ## Check if the line crossed a boundary ##PRINT, "Checking boundary ", boundary[*,1:2], [ri0, ri], [zi0, zi] # cpos, ncross, inds2 = line_crossings([ri0, ri], [zi0, zi], 0, # boundary[0,:], boundary[1,:], 1, ncross=0, inds2=0) # if (ncross % 2) == 1 : # Odd number of boundary crossings # if numpy.sqrt( (ri - cpos[0,0])**2 + (zi - cpos[1,0])**2 ) > 0.1 : # #PRINT, "FINDING BOUNDARY", SQRT( (ri - cpos[0,0])^2 + (zi - cpos[1,0])^2 ) # # Use divide-and-conquer to find crossing point # # tol = 1e-4 # Make the boundary crossing stricter # # ibndry = inds2[0] # Index in boundary where hit # # fcur = f0 # Current known good position # rzold = [ri0,zi0] # rzcur = rzold # while True: # fbndry = (fcur + fmax) / 2 # # Try to go half-way to fmax # #CATCH, theError # if theError != 0 : # # Crossed boundary. Change fmax # #CATCH, /cancel # fmax = fbndry # ibndry = inds2[0] # refined boundary index # else: # solver=lsode(radial_differential, f0, rzold) # rznew=solver.integrate(fbndry - f0) # # # Didn't cross. Make this the new current location # fcur = fbndry # rzcur = rznew # # #CATCH, /cancel # # if numpy.abs(fmax - fcur) < 0.01*numpy.abs(ftarget - f0): # break # ri = rzcur[0] # zi = rzcur[1] # fbndry = fcur # # #PRINT, "Hit boundary", ri, zi, " f =", fbndry # status = 2 # return Bunch(status=status, rinext=ri, zinext=zi, fbndry=fbndry, ibndry=ibndry) #print "follow_gradient" #print ri, zi return Bunch(status = 0, rinext=ri, zinext=zi, fbndry=fbndry, ibndry=ibndry)
def process_grid( rz_grid, mesh, output=None, poorquality=None, gui=None, parent=None, reverse_bt=None, curv=None, smoothpressure=None, smoothhthe=None, smoothcurv=None, settings=None): if settings==None : # Create an empty structure settings = Bunch(dummy=0) # Check settings settings.calcp= -1 settings.calcbt= -1 settings.calchthe= -1 settings.calcjpar= -1 # ;CATCH, err # ;IF err NE 0 THEN BEGIN # ; PRINT, "PROCESS_GRID failed" #; PRINT, " Error message: "+!ERROR_STATE.MSG # ; CATCH, /cancel # ; RETURN # ;ENDIF MU = 4.e-7*numpy.pi poorquality = 0 if output==None : output="bout.grd.nc" # Size of the mesh nx = numpy.int(numpy.sum(mesh.nrad)) ny = numpy.int(numpy.sum(mesh.npol)) # Find the midplane ymid = 0 status = gen_surface(mesh=mesh) # Start generator while True: period, yi, xi, last = gen_surface(period=None, last=None, xi=None) if period : rm = numpy.max(mesh.Rxy[xi,yi]) ymidindx = numpy.argmax(mesh.Rxy[xi,yi]) ymid = yi[ymidindx] break if last==1: break Rxy = numpy.asarray(mesh.Rxy) Zxy = numpy.asarray(mesh.Zxy) psixy = mesh.psixy*mesh.fnorm + mesh.faxis # Non-normalised psi pressure = numpy.zeros((nx, ny)) # Use splines to interpolate pressure profile status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=period, last=last, xi=xi) if period : # Pressure only given on core surfaces # pressure[xi,yi] = SPLINE(rz_grid.npsigrid, rz_grid.pres, mesh.psixy[xi,yi[0]], /double) sol=interpolate.UnivariateSpline(rz_grid.npsigrid, rz_grid.pres,s=1) pressure[xi,yi] =sol(mesh.psixy[xi,yi[0]]) else: pressure[xi,yi] = rz_grid.pres[numpy.size(rz_grid.pres)-1] if last==1 : break # Add a minimum amount if numpy.min(pressure) < 1.0e-2*numpy.max(pressure) : print "****Minimum pressure is very small:", numpy.min(pressure) print "****Setting minimum pressure to 1% of maximum" pressure = pressure + 1e-2*numpy.max(pressure) if smoothpressure != None : p0 = pressure[:,ymid] # Keep initial pressure for comparison while True : #!P.multi=[0,0,2,0,0] fig=figure() plot( p0, xtitle="X index", ytitle="pressure at y="+numpy.strip(numpy.str(ymid),2)+" dashed=original", color=1, lines=1) plot( pressure[:,ymid], color=1) plot( deriv(p0), xtitle="X index", ytitle="DERIV(pressure)", color=1, lines=1) plot( deriv(pressure[:,ymid]), color=1 ) sm = query_yes_no("Smooth pressure profile?")#, gui=gui, dialog_parent=parent) if sm : # Smooth the pressure profile p2 = pressure for i in range (6) : status = gen_surface(mesh=mesh) # Start generator while True : # Get the next domain period, yi, xi, last = gen_surface(period=period, last=last, xi=xi) if (xi > 0) and (xi < (nx-1)) : for j in range (numpy.size(yi)) : p2[xi,yi[j]] = ( 0.5*pressure[xi,yi[j]] + 0.25*(pressure[xi-1,yi[j]] + pressure[xi+1,yi[j]]) ) # Make sure it's still constant on flux surfaces p2[xi,yi] = numpy.mean(p2[xi,yi]) if last != None : break pressure = p2 if sm == 0 : break if numpy.min(pressure) < 0.0 : print "" print "============= WARNING ==============" print "Poor quality equilibrium: Pressure is negative" print "" poorquality = 1 dpdpsi = DDX(psixy, pressure) #;IF MAX(dpdpsi)*mesh.fnorm GT 0.0 THEN BEGIN #; PRINT, "" #; PRINT, "============= WARNING ==============" #; PRINT, "Poor quality equilibrium: Pressure is increasing radially" #; PRINT, "" #; poorquality = 1 #;ENDIF # Grid spacing dx = numpy.zeros((nx, ny)) for y in range (ny) : dx[0:(nx-1),y] = psixy[1::,y] - psixy[0:(nx-1),y] dx[nx-1,y] = dx[nx-2,y] # Sign bpsign = 1. xcoord = psixy if numpy.min(dx) < 0. : bpsign = -1. dx = -dx # dx always positive xcoord = -xcoord dtheta = 2.*numpy.pi / numpy.float(ny) dy = numpy.zeros((nx, ny)) + dtheta # B field components # Following signs mean that psi increasing outwards from # core to edge results in Bp clockwise in the poloidal plane # i.e. in the positive Grad Theta direction. Brxy = mesh.dpsidZ / Rxy Bzxy = -mesh.dpsidR / Rxy Bpxy = numpy.sqrt(Brxy**2 + Bzxy**2) # Determine direction (dot B with grad y vector) dot = ( Brxy[0,ymid]*(Rxy[0,ymid+1] - Rxy[0,ymid-1]) + Bzxy[0,ymid]*(Zxy[0,ymid+1] - Zxy[0,ymid-1]) ) if dot < 0. : print "**** Poloidal field is in opposite direction to Grad Theta -> Bp negative" Bpxy = -Bpxy if bpsign > 0 : sys.exit() # Should be negative bpsign = -1.0 else: if bpsign < 0 : sys.exit() # Should be positive bpsign = 1. # Get toroidal field from poloidal current function fpol Btxy = numpy.zeros((nx, ny)) fprime = numpy.zeros((nx, ny)) fp = deriv(rz_grid.fpol, rz_grid.npsigrid*(rz_grid.sibdry - rz_grid.simagx)) status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=period, last=period, xi=xi) if period : # In the core #fpol = numpy.interp(rz_grid.fpol, rz_grid.npsigrid, mesh.psixy[xi,yi], /spline) sol=interpolate.UnivariateSpline(rz_grid.npsigrid, rz_grid.fpol,s=1) # fpol = SPLINE(rz_grid.npsigrid, rz_grid.fpol, mesh.psixy[xi,yi[0]], 'double') fpol = sol(mesh.psixy[xi,yi[0]]) sol=interpolate.UnivariateSpline(rz_grid.npsigrid, fp ,s=1) # fprime[xi,yi] = SPLINE(rz_grid.npsigrid, fp, mesh.psixy[xi,yi[0]], 'double') fprime[xi,yi] = sol(mesh.psixy[xi,yi[0]]) else: # Outside core. Could be PF or SOL fpol = rz_grid.fpol[numpy.size(rz_grid.fpol)-1] fprime[xi,yi] = 0. Btxy[xi,yi] = fpol / Rxy[xi,yi] if last ==1 : break # Total B field Bxy = numpy.sqrt(Btxy**2 + Bpxy**2) #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # Go through the domains to get a starting estimate # of hthe hthe = numpy.zeros((nx, ny)) # Pick a midplane index status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=period, last=last, xi=xi) if period : # In the core rmax = numpy.argmax(Rxy[xi,yi]) ymidplane = yi[rmax] break if last == 1: break status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=period, last=last, xi=xi) n = numpy.size(yi) # Get distance along this line if period : # Periodic, so can use FFT #drdi = REAL_PART(fft_deriv(Rxy[xi, yi])) #dzdi = REAL_PART(fft_deriv(Zxy[xi, yi])) line=numpy.append(Rxy[xi,yi[n-1::]], Rxy[xi,yi]) line=numpy.append(line,Rxy[xi,yi[0:1]]) drdi = deriv(line)[1:n+1] line=numpy.append(Zxy[xi,yi[n-1::]], Zxy[xi,yi]) line=numpy.append(line,Zxy[xi,yi[0:1]]) dzdi = deriv(line)[1:n+1] else: # Non-periodic drdi = numpy.gradient(Rxy[xi, yi]) dzdi = numpy.gradient(Zxy[xi, yi]) dldi = numpy.sqrt(drdi**2 + dzdi**2) if 0 : # Need to smooth to get sensible results if period : n = numpy.size(dldi) line=numpy.append(dldi[(n-2)::], dldi) # once line=numpy.append(line,dldi[0:2]) dldi = SMOOTH(line, 5)[4:(n+4)] line=numpy.append(dldi[(n-2)::], dldi) #twice line=numpy.append(line,dldi[0:2]) dldi = SMOOTH(line, 5)[4:(n+4)] line=numpy.append(dldi[(n-2)::], dldi) # three line=numpy.append(line,dldi[0:2]) dldi = SMOOTH(line, 5)[4:(n+4)] else: line = dldi dldi = SMOOTH(line, 5)[2:n+2] line = dldi dldi = SMOOTH(line, 5)[2:n+2] line = dldi dldi = SMOOTH(dldi, 5)[2:n+2] hthe[xi, yi] = dldi / dtheta # First estimate of hthe # Get outboard midplane if period and xi == 0 : m = numpy.argmax(Rxy[0,yi]) ymidplane = yi[m] if last == 1 : break print "Midplane index ", ymidplane fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pressure) print "Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)) #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # Correct pressure using hthe print "Calculating pressure profile from force balance" try: # Calculate force balance dpdx = ( -Bpxy*DDX(xcoord, Bpxy * hthe) - Btxy*hthe*DDX(xcoord, Btxy) - (Btxy*Btxy*hthe/Rxy)*DDX(xcoord, Rxy) ) / (MU*hthe) # Surface average dpdx2 = surface_average(dpdx, mesh) pres = numpy.zeros((nx, ny)) # Integrate to get pressure for i in range (ny) : pres[:,i] = int_func(psixy[:,i], dpdx2[:,i]) pres[:,i] = pres[:,i] - pres[nx-1,i] status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=None, last=None, xi=None) ma = numpy.max(pres[xi,yi]) for i in range (numpy.size(yi)) : pres[:,yi[i]] = pres[:,yi[i]] - pres[xi,yi[i]] + ma if last == 1 : break pres = pres - numpy.min(pres) # Some sort of smoothing here? fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, hthe, pres) print "Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)) #!P.MULTI=[0,0,2,0,0] fig=figure(figsize=(7, 11)) subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95, wspace=.3, hspace=.25) SURFACE( pressure, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2,1,1]) title("Input pressure") SURFACE( pres, fig, xtitle="X", ytitle="Y", var='Pa', sub=[2,1,2]) title("New pressure") # arrange the plot on the screen # mngr = get_current_fig_manager() # geom = mngr.window.geometry() # x,y,dx,dy = geom.getRect() # mngr.window.setGeometry(0, 0, dx, dy) # show(block=False) calcp = settings.calcp if calcp == -1 : calcp = query_yes_no("Keep new pressure?")#, gui=gui, dialog_parent=parent) else: time.sleep( 2 ) if calcp == 1 : pressure = pres dpdpsi = dpdx2 except Exception: print "WARNING: Pressure profile calculation failed: "#, !ERROR_STATE.MSG pass #CATCH, /cancel #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # Correct f = RBt using force balance calcbt = settings.calcbt if calcbt == -1 : calcbt = query_yes_no("Correct f=RBt using force balance?")#, gui=gui, dialog_parent=parent) if calcbt == 1 : new_Btxy = newton_Bt(psixy, Rxy, Btxy, Bpxy, pres, hthe, mesh) fb0 = force_balance(psixy, Rxy, Bpxy, new_Btxy, hthe, pressure) print "force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)) fig=figure(figsize=(7, 11)) subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95, wspace=.3, hspace=.25) subplot(211) SURFACE( Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2,1,1]) title("Input Bt") subplot(212) SURFACE( new_Btxy, fig, xtitle="X", ytitle="Y", var='T', sub=[2,1,2]) title("New Bt") # arrange the plot on the screen #mngr = get_current_fig_manager() #geom = mngr.window.geometry() #x,y,dx,dy = geom.getRect() #mngr.window.setGeometry(600, 0, dx, dy) show(block=False) calcbt = settings.calcbt if calcbt == -1 : calcbt = query_yes_no("Keep new Bt?")#, gui=gui, dialog_parent=parent) if calcbt == 1 : Btxy = new_Btxy Bxy = numpy.sqrt(Btxy**2 + Bpxy**2) #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # CALCULATE HTHE # Modify hthe to fit force balance using initial guess # Does not depend on signs #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; calchthe = settings.calchthe if calchthe == -1 : calchthe = query_yes_no("Adjust hthe using force balance?")#, gui=gui, dialog_parent=parent) if calchthe == 1 : # This doesn't behave well close to the x-points fixhthe = numpy.int(nx / 2) nh = correct_hthe(Rxy, psixy, Btxy, Bpxy, hthe, pressure, fixhthe=fixhthe) fb0 = force_balance(psixy, Rxy, Bpxy, Btxy, nh, pressure) print "Force imbalance: ", numpy.mean(numpy.abs(fb0)), numpy.max(numpy.abs(fb0)) print "numpy.maximum difference in hthe: ", numpy.max(numpy.abs(hthe - nh)) print "numpy.maximum percentage difference: ", 100.*numpy.max(numpy.abs((hthe - nh)/hthe)) #!P.multi=[0,0,1,0,0] fig=figure(figsize=(7, 4)) title("Poloidal arc length at midplane. line is initial estimate") plot( hthe[:,0], '-' ) plot( nh[:,0], 'r-+' ) # arrange the plot on the screen #mngr = get_current_fig_manager() #geom = mngr.window.geometry() #x,y,dx,dy = geom.getRect() #mngr.window.setGeometry(0, 1150, dx, dy) show(block=False) if query_yes_no("Keep new hthe?") == 1:#, gui=gui, dialog_parent=parent) : hthe = nh if smoothhthe != None : # Smooth hthe to prevent large jumps in X or Y. This # should be done by creating a better mesh in the first place # Need to smooth in Y and X otherwise smoothing in X # produces discontinuities in Y hold = hthe if 1 : # Nonlinear smoothing. Tries to smooth only regions with large # changes in gradient hthe =0.# smooth_nl(hthe, mesh) else: # Just use smooth in both directions for i in range (ny) : hthe[:,i] = SMOOTH(SMOOTH(hthe[:,i],10),10) status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=None, last=None, xi=None) n = numpy.size(yi) if period : hthe[xi,yi] = (SMOOTH([hthe[xi,yi[(n-4):(n-1)]], hthe[xi,yi], hthe[xi,yi[0:3]]], 4))[4:(n+3)] else: hthe[xi,yi] = SMOOTH(hthe[xi,yi], 4) if last == 1: break # Calculate field-line pitch pitch = hthe * Btxy / (Bpxy * Rxy) # derivative with psi dqdpsi = DDX(psixy, pitch) qinty, qloop = int_y(pitch, mesh, loop=0, nosmooth='nosmooth', simple='simple') qinty = qinty * dtheta qloop = qloop * dtheta sinty = int_y(dqdpsi, mesh, nosmooth='nosmooth', simple='simple') * dtheta # NOTE: This is only valid in the core pol_angle = numpy.zeros((nx,ny)) for i in range (nx) : pol_angle[i, :] = 2.0*numpy.pi * qinty[i,:] / qloop[i] #;;;;;;;;;;;;;;;;;;; THETA_ZERO ;;;;;;;;;;;;;;;;;;;;;; # re-set zshift to be zero at the outboard midplane print "MIDPLANE INDEX = ", ymidplane status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=None, last=None, xi=None) w = numpy.size(numpy.where(yi == ymidplane)) if w > 0 : # Crosses the midplane qinty[xi, yi] = qinty[xi, yi] - qinty[xi, ymidplane] sinty[xi, yi] = sinty[xi, yi] - sinty[xi, ymidplane] else: # Doesn't include a point at the midplane qinty[xi, yi] = qinty[xi, yi] - qinty[xi,yi[0]] sinty[xi, yi] = sinty[xi, yi] - sinty[xi,yi[0]] if last ==1 : break print "" print "==== Calculating curvature ====" #;;;;;;;;;;;;;;;;;;; CURVATURE ;;;;;;;;;;;;;;;;;;;;;;; # Calculating b x kappa if curv == None : print "*** Calculating curvature in toroidal coordinates" thetaxy = numpy.zeros((nx, ny)) status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=None, last=None, xi=None) thetaxy[xi,yi] = numpy.arange(numpy.size(yi)).astype(float)*dtheta if last ==1 : break bxcv = curvature( nx, ny, Rxy,Zxy, Brxy, Bzxy, Btxy, psixy, thetaxy, hthe, mesh=mesh) bxcvx = bpsign*bxcv.psi bxcvy= bxcv.theta bxcvz = bpsign*(bxcv.phi - sinty*bxcv.psi - pitch*bxcv.theta) # x borders bxcvx[0,:] = bxcvx[1,:] bxcvx[nx-1,:] = bxcvx[nx-2,:] bxcvy[0,:] = bxcvy[1,:] bxcvy[nx-1,:] = bxcvy[nx-2,:] bxcvz[0,:] = bxcvz[1,:] bxcvz[nx-1,:] = bxcvz[nx-2,:] elif curv == 1 : # Calculate on R-Z mesh and then interpolate onto grid # ( cylindrical coordinates) print "*** Calculating curvature in cylindrical coordinates" bxcv = rz_curvature(rz_grid) # DCT methods cause spurious oscillations # Linear interpolation seems to be more robust bxcv_psi = numpy.interp(bxcv.psi, mesh.Rixy, mesh.Zixy) bxcv_theta = numpy.interp(bxcv.theta, mesh.Rixy, mesh.Zixy) / hthe bxcv_phi = numpy.interp(bxcv.phi, mesh.Rixy, mesh.Zixy) # If Bp is reversed, then Grad x = - Grad psi bxcvx = bpsign*bxcv_psi bxcvy = bxcv_theta bxcvz = bpsign*(bxcv_phi - sinty*bxcv_psi - pitch*bxcv_theta) elif curv == 2 : # Curvature from Curl(b/B) bxcvx = bpsign*(Bpxy * Btxy*Rxy * DDY(1. / Bxy, mesh) / hthe) bxcvy = -bpsign*Bxy*Bpxy * DDX(xcoord, Btxy*Rxy/Bxy^2) / (2.*hthe) bxcvz = Bpxy^3 * DDX(xcoord, hthe/Bpxy) / (2.*hthe*Bxy) - Btxy*Rxy*DDX(xcoord, Btxy/Rxy) / (2.*Bxy) - sinty*bxcvx else: # calculate in flux coordinates. print "*** Calculating curvature in flux coordinates" dpb = numpy.zeros((nx, ny)) # quantity used for y and z components for i in range (ny) : dpb[:,i] = MU*dpdpsi/Bxy[:,i] dpb = dpb + DDX(xcoord, Bxy) bxcvx = bpsign*(Bpxy * Btxy*Rxy * DDY(1. / Bxy, mesh) / hthe) bxcvy = bpsign*(Bpxy*Btxy*Rxy*dpb / (hthe*Bxy^2)) bxcvz = -dpb - sinty*bxcvx if smoothcurv: # Smooth curvature to prevent large jumps # Nonlinear smoothing. Tries to smooth only regions with large # changes in gradient bz = bxcvz + sinty * bxcvx print "Smoothing bxcvx..." bxcvx = 0.#smooth_nl(bxcvx, mesh) print "Smoothing bxcvy..." bxcvy = 0.#smooth_nl(bxcvy, mesh) print "Smoothing bxcvz..." bz = 0.#smooth_nl(bz, mesh) bxcvz = bz - sinty * bxcvx #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # CALCULATE PARALLEL CURRENT # # Three ways to calculate Jpar0: # 1. From fprime and pprime # 2. From Curl(B) in field-aligned coords # 3. From the curvature # # Provides a way to check if Btor should be reversed # #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; print "" print "==== Calculating parallel current ====" jpar0 = - Bxy * fprime / MU - Rxy*Btxy * dpdpsi / Bxy # Set to zero in PF and SOL status = gen_surface(mesh=mesh) # Start generator while True: # Get the next domain period, yi, xi, last = gen_surface(period=None, last=None, xi=None) if period == None : jpar0[xi,yi] = 0.0 if last == 1 : break # Curl(B) expression for Jpar0 (very noisy usually) j0 = ( bpsign*((Bpxy*Btxy*Rxy/(Bxy*hthe))*( DDX(xcoord, Bxy**2*hthe/Bpxy) - bpsign*Btxy*Rxy*DDX(xcoord,Btxy*hthe/(Rxy*Bpxy)) ) - Bxy*DDX(xcoord, Btxy*Rxy)) / MU ) # Create a temporary mesh structure to send to adjust_jpar tmp_mesh = Bunch(mesh, bxcvx=bxcvx, bxcvy=bxcvy, bxcvz=bxcvz, Bpxy=Bpxy, Btxy=Btxy, Bxy=Bxy, dx=dx, dy=dy, hthe=hthe, jpar0=jpar0, pressure=pressure) tmp_mesh.psixy = psixy jpar = adjust_jpar( tmp_mesh, noplot='noplot') #!P.multi=[0,2,2,0,0] fig=figure(figsize=(15, 11)) subplots_adjust(left=.07, bottom=.07, right=0.95, top=0.95, wspace=.3, hspace=.25) subplot(221) SURFACE( jpar0, fig, xtitle="X", ytitle="Y", var='A', sub=[2,2,1]) title("Jpar from F' and P'") subplot(222) SURFACE( jpar, fig, xtitle="X", ytitle="Y", var='A', sub=[2,2,2]) title("Jpar from curvature") subplot(223) plot( jpar0[0,:],'-', jpar[0,:] ,'+' ) ylim([numpy.min([jpar0[0,:],jpar[0,:]]), numpy.max([jpar0[0,:],jpar[0,:]])]) title("jpar at x=0. Solid from f' and p'") subplot(224) plot(jpar0[:,ymidplane],'-' , jpar[:,ymidplane] , '+' ) ylim([numpy.min([jpar0[:,ymidplane],jpar[:,ymidplane]]),numpy.max([jpar0[:,ymidplane],jpar[:,ymidplane]])]) title("Jpar at y="+numpy.str(ymidplane)+" Solid from f' and p'") # arrange the plot on the screen #mngr = get_current_fig_manager() #geom = mngr.window.geometry() #x,y,dx,dy = geom.getRect() #mngr.window.setGeometry(1350, 0, dx, dy) show(block=False) # !P.multi=0 calcjpar = settings.calcjpar if calcjpar == -1 : calcjpar = query_yes_no("Use Jpar from curvature?")#, gui=gui, dialog_parent=parent) if calcjpar == True : jpar0 = jpar if 0 : # Try smoothing jpar0 in psi, preserving zero points and maxima jps = jpar0 for y in range ( ny ): j = jpar0[:,y] js = j ma = numpy.max(numpy.abs(j)) ip = numpy.argmax(numpy.abs(j)) if (ma < 1.e-4) or (ip == 0) : jps[:,y] = j level = 1. #i0 = MAX(WHERE(ABS(j[0:ip]) LT level)) i1 = numpy.min(numpy.where(numpy.abs(j[ip::]) < level)) #IF i0 LE 0 THEN i0 = 1 i0 = 1 if i1 == -1 : i1 = nx-2 else: i1 = i1 + ip if (ip <= i0) or (ip >= i1) : # Now preserve starting and end points, and peak value div = numpy.int((i1-i0)/10)+1 # reduce number of points by this factor inds = [i0] # first point for i in [i0+div, ip-div, div] : inds = [inds, i] inds = [inds, ip] # Put in the peak point # Calculate spline interpolation of inner part js[0:ip] = spline_mono(inds, j[inds], numpy.arange(ip+1), yp0=(j[i0] - j[i0-1]), ypn_1=0.0) inds = [ip] # peak point for i in [ip+div, i1-div, div] : inds = [inds, i] inds = [inds, i1] # Last point js[ip:i1] = spline_mono(inds, j[inds], ip+numpy.arange(i1-ip+1), yp0=0.0, ypn_1=(j[i1+1]-j[i1])) jps[:,y] = js #;;;;;;;;;;;;;;;;;;; TOPOLOGY ;;;;;;;;;;;;;;;;;;;;;;; # Calculate indices for backwards-compatibility nr = numpy.size(mesh.nrad) np = numpy.size(mesh.npol) if (nr == 2) and (np == 3) : print "Single null equilibrium" ixseps1 = mesh.nrad[0] ixseps2 = nx jyseps1_1 = mesh.npol[0]-1 jyseps1_2 = mesh.npol[0] + numpy.int(mesh.npol[1]/2) ny_inner = jyseps1_2 jyseps2_1 = jyseps1_2 jyseps2_2 = ny - mesh.npol[2]-1 elif (nr == 3) and (np == 6) : print "Double null equilibrium" ixseps1 = mesh.nrad[0] ixseps2 = ixseps1 + mesh.nrad[1] jyseps1_1 = mesh.npol[0]-1 jyseps2_1 = jyseps1_1 + mesh.npol[1] ny_inner = jyseps2_1 + mesh.npol[2] + 1 jyseps1_2 = ny_inner + mesh.npol[3] - 1 jyseps2_2 = jyseps1_2 + mesh.npol[4] elif (nr == 1) and (np == 1) : print "Single domain" ixseps1 = nx ixseps2 = nx jyseps1_1 = -1 jyseps1_2 = numpy.int(ny/2) jyseps2_1 = numpy.int(ny/2) ny_inner = numpy.int(ny/2) jyseps2_2 = ny - 1 else: print "***************************************" print "* WARNING: Equilibrium not recognised *" print "* *" print "* Check mesh carefully! *" print "* *" print "* Contact Ben Dudson *" print "* [email protected] *" print "***************************************" ixseps1 = -1 ixseps2 = -1 jyseps1_1 = -1 jyseps1_2 = numpy.int(ny/2) jyseps2_1 = numpy.int(ny/2) ny_inner = numpy.int(ny/2) jyseps2_2 = ny - 1 print "Generating plasma profiles:" print " 1. Flat temperature profile" print " 2. Flat density profile" print " 3. Te proportional to density" while True: opt = raw_input("Profile option:") if eval(opt) >= 1 and eval(opt) <= 3 : break if opt == 1 : # flat temperature profile print "Setting flat temperature profile" while True: Te_x = eval(raw_input("Temperature (eV):")) # get density Ni = pressure / (2.* Te_x* 1.602e-19*1.0e20) print "numpy.maximum density (10^20 m^-3):", numpy.max(Ni) done = query_yes_no("Is this ok?") if done == 1 : break Te = numpy.zeros((nx, ny))+Te_x Ti = Te Ni_x = numpy.max(Ni) Ti_x = Te_x elif opt == 2 : print "Setting flat density profile" while True: Ni_x = eval(raw_input("Density [10^20 m^-3]:")) # get temperature Te = pressure / (2.* Ni_x * 1.602e-19*1.0e20) print "numpy.maximum temperature (eV):", numpy.max(Te) if query_yes_no("Is this ok?") == 1 : break Ti = Te Ni = numpy.zeros((nx, ny)) + Ni_x Te_x = numpy.max(Te) Ti_x = Te_x else: print "Setting te proportional to density" while True: Te_x = eval(raw_input("Maximum temperature [eV]:")) Ni_x = numpy.max(pressure) / (2.*Te_x * 1.602e-19*1.0e20) print "Maximum density [10^20 m^-3]:", Ni_x Te = Te_x * pressure / numpy.max(pressure) Ni = Ni_x * pressure / numpy.max(pressure) if query_yes_no("Is this ok?") == 1 : break Ti = Te Ti_x = Te_x rmag = numpy.max(numpy.abs(Rxy)) print "Setting rmag = ", rmag bmag = numpy.max(numpy.abs(Bxy)) print "Setting bmag = ", bmag #;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; # save to file # open a new netCDF file for writing. handle = file_open(output) print "Writing grid to file "+output # Size of the grid s = file_write(handle, "nx", nx) s = file_write(handle, "ny", ny) # Topology for original scheme s = file_write(handle, "ixseps1", ixseps1) s = file_write(handle, "ixseps2", ixseps2) s = file_write(handle, "jyseps1_1", jyseps1_1) s = file_write(handle, "jyseps1_2", jyseps1_2) s = file_write(handle, "jyseps2_1", jyseps2_1) s = file_write(handle, "jyseps2_2", jyseps2_2) s = file_write(handle, "ny_inner", ny_inner); # Grid spacing s = file_write(handle, "dx", dx) s = file_write(handle, "dy", dy) s = file_write(handle, "ShiftAngle", qloop) s = file_write(handle, "zShift", qinty) s = file_write(handle, "pol_angle", pol_angle) s = file_write(handle, "ShiftTorsion", dqdpsi) s = file_write(handle, "Rxy", Rxy) s = file_write(handle, "Zxy", Zxy) s = file_write(handle, "Bpxy", Bpxy) s = file_write(handle, "Btxy", Btxy) s = file_write(handle, "Bxy", Bxy) s = file_write(handle, "hthe", hthe) s = file_write(handle, "sinty", sinty) s = file_write(handle, "psixy", psixy) # Topology for general configurations s = file_write(handle, "yup_xsplit", mesh.yup_xsplit) s = file_write(handle, "ydown_xsplit", mesh.ydown_xsplit) s = file_write(handle, "yup_xin", mesh.yup_xin) s = file_write(handle, "yup_xout", mesh.yup_xout) s = file_write(handle, "ydown_xin", mesh.ydown_xin) s = file_write(handle, "ydown_xout", mesh.ydown_xout) s = file_write(handle, "nrad", mesh.nrad) s = file_write(handle, "npol", mesh.npol) # plasma profiles s = file_write(handle, "pressure", pressure) s = file_write(handle, "Jpar0", jpar0) s = file_write(handle, "Ni0", Ni) s = file_write(handle, "Te0", Te) s = file_write(handle, "Ti0", Ti) s = file_write(handle, "Ni_x", Ni_x) s = file_write(handle, "Te_x", Te_x) s = file_write(handle, "Ti_x", Ti_x) s = file_write(handle, "bmag", bmag) s = file_write(handle, "rmag", rmag) # Curvature s = file_write(handle, "bxcvx", bxcvx) s = file_write(handle, "bxcvy", bxcvy) s = file_write(handle, "bxcvz", bxcvz) # Psi range s = file_write(handle, "psi_axis", mesh.faxis) psi_bndry = mesh.faxis + mesh.fnorm s = file_write(handle, "psi_bndry", psi_bndry) file_close, handle print "DONE"
def Bt_func ( Bt , psi, a, b): #global psi, a, b return deriv( Bt, psi ) + a*Bt + b / Bt