Esempio n. 1
0
def test_overlay():
    """Test plotting of overlay
    """
    mlab.options.backend = 'test'
    # basic overlay support
    overlay_file = pjoin(data_dir, "lh.sig.nii.gz")
    brain = Brain(*std_args)
    brain.add_overlay(overlay_file)
    brain.overlays["sig"].remove()
    brain.add_overlay(overlay_file, min=5, max=20, sign="pos")
    sig1 = io.read_scalar_data(pjoin(data_dir, "lh.sig.nii.gz"))
    sig2 = io.read_scalar_data(pjoin(data_dir, "lh.alt_sig.nii.gz"))

    thresh = 4
    sig1[sig1 < thresh] = 0
    sig2[sig2 < thresh] = 0

    conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
    brain.add_overlay(sig1, 4, 30, name="sig1")
    brain.overlays["sig1"].pos_bar.lut_mode = "Reds"
    brain.overlays["sig1"].pos_bar.visible = False

    brain.add_overlay(sig2, 4, 30, name="sig2")
    brain.overlays["sig2"].pos_bar.lut_mode = "Blues"
    brain.overlays["sig2"].pos_bar.visible = False

    brain.add_overlay(conjunct, 4, 30, name="conjunct")
    brain.overlays["conjunct"].pos_bar.lut_mode = "Purples"
    brain.overlays["conjunct"].pos_bar.visible = False
    brain.close()
Esempio n. 2
0
def test_overlay():
    """Test plotting of overlay
    """
    mlab.options.backend = 'test'
    # basic overlay support
    overlay_file = pjoin(data_dir, "lh.sig.nii.gz")
    brain = Brain(*std_args)
    brain.add_overlay(overlay_file)
    brain.overlays["sig"].remove()
    brain.add_overlay(overlay_file, min=5, max=20, sign="pos")
    sig1 = io.read_scalar_data(pjoin(data_dir, "lh.sig.nii.gz"))
    sig2 = io.read_scalar_data(pjoin(data_dir, "lh.alt_sig.nii.gz"))

    thresh = 4
    sig1[sig1 < thresh] = 0
    sig2[sig2 < thresh] = 0

    conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
    brain.add_overlay(sig1, 4, 30, name="sig1")
    brain.overlays["sig1"].pos_bar.lut_mode = "Reds"
    brain.overlays["sig1"].pos_bar.visible = False

    brain.add_overlay(sig2, 4, 30, name="sig2")
    brain.overlays["sig2"].pos_bar.lut_mode = "Blues"
    brain.overlays["sig2"].pos_bar.visible = False

    brain.add_overlay(conjunct, 4, 30, name="conjunct")
    brain.overlays["conjunct"].pos_bar.lut_mode = "Purples"
    brain.overlays["conjunct"].pos_bar.visible = False
    brain.close()
Esempio n. 3
0
 def vizify(self):
     for hemi in self.hemis:
         print "visualize %s" % hemi
         
         # Bring up the beauty (the underlay)
         brain = Brain(self.subject_id, hemi, self.surf, \
                       config_opts=self.config_opts, \
                       subjects_dir=self.subjects_dir)
         
         surf_data = io.read_scalar_data(self.overlay_surf[hemi])
         if (sum(abs(surf_data)) > 0):
             # Overlay another hopeful beauty (functional overlay)
             brain.add_overlay(self.overlay_surf[hemi], name=self.overlay_name, 
                               min=self.min, max=self.max, sign=self.sign)
         
             # Update colorbar
             #brain.overlays[self.overlay_name].pos_bar.lut_mode = self.colorbar
             tmp = brain.overlays[self.overlay_name]
             lut = tmp.pos_bar.lut.table.to_array()
             lut[:,0:3] = self.colorbar
             tmp.pos_bar.lut.table = lut
         
             # Refresh
             brain.show_view("lat")
             brain.hide_colorbar()
         
         # Save the beauts
         brain.save_imageset("%s_%s" % (self.outprefix, hemi), self.views, 
                             'jpg', colorbar=None)
         
         # End a great journey, till another life
         brain.close()
     return
Esempio n. 4
0
def loadScalar(pathToScalar):
    '''
    Method to read scalar vectors for example in mgh format
    '''
    outVec = io.read_scalar_data(pathToScalar)

    return outVec
Esempio n. 5
0
def vol_to_surf(infile, outprefix=None, interp="trilinear", hemis=["lh", "rh"]):
    """
    Transforms a volume from MNI to FSaverage space using mri_vol2surf.
    
    Parameters
    ----------
    infile : str
    outprefix : str or None (default: None)
        When outfile is None, the path will be autogenerated using tmpfile.
        The suffix of the file will be the hemi and .nii.gz.
    interp : str (default: trilinear)
        Can be 'nearest' or 'trilinear'.
    hemis : list (default: ['lh', 'rh'])
    
    Returns
    --------
    outfiles : dict
        For instance: `{'lh': 'file1', 'rh': 'file2'}`.
    outsurfs : dict
        For instance: `{'lh': surf_lh, 'rh': surf_rh}` where surf_* is an 
        `ndarray`.
    """
    
    if not op.exists(infile):
        raise Exception("Input for vol_to_surf '%s' doesn't exist" % infile)
    if outprefix is None:
        to_clean    = True
        _,outprefix = tempfile.mkstemp()
    else:
        to_clean    = False
    outfiles = {}
    outsurfs = {}
    
    templ_vars = dict(input=infile, interp=interp)
    for hemi in hemis:
        outfile = "%s_%s.nii.gz" % (outprefix, hemi)
        outfiles[hemi] = outfile
        
        templ_vars["hemi"]   = hemi
        templ_vars["output"] = outfile
        
        cmd = "mri_vol2surf --mov %(input)s \
        --mni152reg --projfrac-max 0 1 0.1 \
        --interp %(interp)s --hemi %(hemi)s \
        --out %(output)s --reshape" % templ_vars
        
        print cmd
        p = Process(cmd)
        print p.stdout
        print p.stderr
        if p.retcode != 0:
            raise Exception("mri_vol2surf failed")
        
        outsurfs[hemi] = io.read_scalar_data(outfile)
    
    if to_clean:
        os.remove(outprefix)
    
    return (outfiles, outsurfs)
Esempio n. 6
0
def test_overlay():
    """Test plotting of overlay."""
    _set_backend()
    # basic overlay support
    overlay_file = pjoin(data_dir, "lh.sig.nii.gz")
    brain = Brain(*std_args)
    brain.add_overlay(overlay_file)
    brain.overlays["sig"].remove()
    brain.add_overlay(overlay_file, min=5, max=20, sign="pos")
    sig1 = io.read_scalar_data(pjoin(data_dir, "lh.sig.nii.gz"))
    sig2 = io.read_scalar_data(pjoin(data_dir, "lh.alt_sig.nii.gz"))

    # two-sided overlay
    brain.add_overlay(sig1, 4, 30, name="two-sided")
    overlay = brain.overlays_dict.pop('two-sided')[0]
    assert_array_equal(overlay.pos_bar.data_range, [4, 30])
    assert_array_equal(overlay.neg_bar.data_range, [-30, -4])
    assert_equal(overlay.pos_bar.reverse_lut, True)
    assert_equal(overlay.neg_bar.reverse_lut, False)
    overlay.remove()

    thresh = 4
    sig1[sig1 < thresh] = 0
    sig2[sig2 < thresh] = 0

    conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
    brain.add_overlay(sig1, 4, 30, name="sig1")
    brain.overlays["sig1"].pos_bar.lut_mode = "Reds"
    brain.overlays["sig1"].pos_bar.visible = False

    brain.add_overlay(sig2, 4, 30, name="sig2")
    brain.overlays["sig2"].pos_bar.lut_mode = "Blues"
    brain.overlays["sig2"].pos_bar.visible = False

    brain.add_overlay(conjunct, 4, 30, name="conjunct")
    brain.overlays["conjunct"].pos_bar.lut_mode = "Purples"
    brain.overlays["conjunct"].pos_bar.visible = False

    brain.set_surf('white')

    brain.close()
Esempio n. 7
0
def test_overlay():
    """Test plotting of overlay."""
    _set_backend()
    # basic overlay support
    overlay_file = pjoin(data_dir, "lh.sig.nii.gz")
    brain = Brain(*std_args)
    brain.add_overlay(overlay_file)
    brain.overlays["sig"].remove()
    brain.add_overlay(overlay_file, min=5, max=20, sign="pos")
    sig1 = io.read_scalar_data(pjoin(data_dir, "lh.sig.nii.gz"))
    sig2 = io.read_scalar_data(pjoin(data_dir, "lh.alt_sig.nii.gz"))

    # two-sided overlay
    brain.add_overlay(sig1, 4, 30, name="two-sided")
    overlay = brain.overlays_dict.pop('two-sided')[0]
    assert_array_equal(overlay.pos_bar.data_range, [4, 30])
    assert_array_equal(overlay.neg_bar.data_range, [-30, -4])
    assert_equal(overlay.pos_bar.reverse_lut, True)
    assert_equal(overlay.neg_bar.reverse_lut, False)
    overlay.remove()

    thresh = 4
    sig1[sig1 < thresh] = 0
    sig2[sig2 < thresh] = 0

    conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
    brain.add_overlay(sig1, 4, 30, name="sig1")
    brain.overlays["sig1"].pos_bar.lut_mode = "Reds"
    brain.overlays["sig1"].pos_bar.visible = False

    brain.add_overlay(sig2, 4, 30, name="sig2")
    brain.overlays["sig2"].pos_bar.lut_mode = "Blues"
    brain.overlays["sig2"].pos_bar.visible = False

    brain.add_overlay(conjunct, 4, 30, name="conjunct")
    brain.overlays["conjunct"].pos_bar.lut_mode = "Purples"
    brain.overlays["conjunct"].pos_bar.visible = False

    brain.set_surf('white')

    brain.close()
def mask_vtx_data(overlay_fname, cortex_fname, thresh):

    vtx_data = io.read_scalar_data(overlay_fname)
    cortex_data = io.read_label(cortex_fname)

    # Create a mask of 1s where there is cortex and 0s on the medial wall
    mask = np.zeros_like(vtx_data)
    mask[cortex_data] = 1

    # Set all values that are not in cortex to thresh-1
    vtx_data[mask == 0] = thresh-1

    return vtx_data
Esempio n. 9
0
def mask_vtx_data(overlay_fname, cortex_fname, thresh):

    vtx_data = io.read_scalar_data(overlay_fname)
    cortex_data = io.read_label(cortex_fname)

    # Create a mask of 1s where there is cortex and 0s on the medial wall
    mask = np.zeros_like(vtx_data)
    mask[cortex_data] = 1

    # Set all values that are not in cortex to thresh-1
    vtx_data[mask == 0] = thresh-1

    return vtx_data
Esempio n. 10
0
    def vizify(self):
        for hemi in self.hemis:
            print "visualize %s" % hemi

            # Bring up the beauty (the underlay)
            brain = Brain(self.subject_id, hemi, self.surf, \
                          config_opts=self.config_opts, \
                          subjects_dir=self.subjects_dir)

            surf_data = io.read_scalar_data(self.overlay_surf[hemi])
            if (sum(abs(surf_data)) > 0):
                # Overlay another hopeful beauty (functional overlay)
                brain.add_overlay(self.overlay_surf[hemi],
                                  name=self.overlay_name,
                                  min=self.min,
                                  max=self.max,
                                  sign=self.sign)

                # Update colorbar
                #brain.overlays[self.overlay_name].pos_bar.lut_mode = self.colorbar
                tmp = brain.overlays[self.overlay_name]
                lut = tmp.pos_bar.lut.table.to_array()
                lut[:, 0:3] = self.colorbar
                tmp.pos_bar.lut.table = lut

                # Refresh
                brain.show_view("lat")
                brain.hide_colorbar()

            # Save the beauts
            brain.save_imageset("%s_%s" % (self.outprefix, hemi),
                                self.views,
                                'jpg',
                                colorbar=None)

            # End a great journey, till another life
            brain.close()
        return
Esempio n. 11
0
###


def run(cmd):
    print(cmd)
    os.system(cmd)


prefix = op.join(odir, "surf_neurosynth")
ns_combined_dir = op.join(base,
                          "neurosynth/neurosynth/intelligence_reasoning_wm")
cmd = "./x_vol2surf.py %s/_pAgF_z.nii.gz %s/_pAgF_z_FDR_0.05.nii.gz %s" % (
    ns_combined_dir, ns_combined_dir, prefix)
#run(cmd)
ns_combined = {
    hemi: io.read_scalar_data("%s_%s.nii.gz" % (prefix, hemi))
    for hemi in ["lh", "rh"]
}
all_ns = ns_combined.values()

print 'getting range'
dmin2 = np.array([ns[ns.nonzero()].min() for ns in all_ns]).min()
dmax2 = np.array([ns[ns.nonzero()].max() for ns in all_ns]).max()
print 'min=%.4f; max=%.4f' % (dmin2, dmax2)

###
# Overlap
###

scans_and_ns = {}
for hemi in ["lh", "rh"]:
Esempio n. 12
0
print 'min=%.4f; max=%.4f' % (dmin,dmax)


###
# Neurosynth
###

def run(cmd):
    print(cmd)
    os.system(cmd)

prefix              = op.join(odir, "surf_neurosynth")
ns_combined_dir     = op.join(base, "neurosynth/neurosynth/intelligence_reasoning_wm")
cmd = "./x_vol2surf.py %s/_pAgF_z.nii.gz %s/_pAgF_z_FDR_0.05.nii.gz %s" % (ns_combined_dir, ns_combined_dir, prefix)
#run(cmd)
ns_combined         = { hemi : io.read_scalar_data("%s_%s.nii.gz" % (prefix, hemi)) for hemi in ["lh", "rh"] }
all_ns              = ns_combined.values()

print 'getting range'
dmin2 = np.array([ ns[ns.nonzero()].min() for ns in all_ns ]).min()
dmax2 = np.array([ ns[ns.nonzero()].max() for ns in all_ns ]).max()
print 'min=%.4f; max=%.4f' % (dmin2,dmax2)


###
# Overlap
###

scans_and_ns = {}
for hemi in ["lh", "rh"]:
    # 1. Combine IQ CWAS Scan 1 and 2
Esempio n. 13
0
dmin = ranges.min()
dmax = ranges.max()
print 'min=%.4f; max=%.4f' % (dmin,dmax)



###
# Read surfaces
###

print "...reading surfaces"
surfs = {}
for measure in measures:
    surfs[measure] = {}
    for hemi in ["lh", "rh"]:
        tmp = io.read_scalar_data(all_surf_files[measure][hemi])
        surfs[measure][hemi] = tmp


###
# Plot
###

print "...plotting"

cbarfile = "/home2/data/Projects/CWAS/share/lib/surfwrap/colorbars/red-yellow.txt"
cbar = load_colorbar(cbarfile)

# Overlap
for measure in measures:
    oprefix     = op.join(odir, "surf_%s" % measure)
Esempio n. 14
0
ipython

#%gui qt
%gui wx
from surfer import Brain
import mayavi
from numpy import array

import os.path as op
import numpy as np
from surfer import io


########################## TJ - SJ #########################"
brain = Brain("fsaverage", "lh", "pial", config_opts={"cortex":"low_contrast","background":"black"})
sig1 = np.nan_to_num(io.read_scalar_data("/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/fMRI/GROUPlvl_TJ-SJ_lh.mgz"))
sig2 = np.nan_to_num(io.read_scalar_data('/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/fMRI/GROUPlvl_SJ-TJ_lh.mgz'))

thresh = 1
sig1[sig1 < thresh] = 0
sig2[sig2 < thresh] = 0
conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
brain.add_overlay(sig1, 1, 8, name="sig1")
brain.overlays["sig1"].pos_bar.lut_mode = "Reds"
brain.overlays["sig1"].pos_bar.visible = False
brain.add_overlay(sig2, 1, 8, name="sig2")
brain.overlays["sig2"].pos_bar.lut_mode = "Blues"
brain.overlays["sig2"].pos_bar.visible = False

################### CONJ[TJ-CTRL SJ- CTRL] #####################
################## WHITE #######################################
brain.add_overlay(overlay_file, min=3.11, max=10, sign="pos")
mayavi.mlab.view(azimuth=225, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_TJ_CTRL_tT_extT_lh_projfrac05_face1.png", size=None, figure=None, magnification='auto')
mayavi.mlab.view(azimuth=45, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_TJ_CTRL_tT_extT_rh_projfrac05_face2.png", size=None, figure=None, magnification='auto')
mayavi.mlab.view(azimuth=315, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_TJ_CTRL_tT_extT_rh_projfrac05_face3.png", size=None, figure=None, magnification='auto')
################### SJ-CTRL #####################
###################### LH #######################
brain = Brain("fsaverage", "lh", "inflated", config_opts={"cortex":"low_contrast","background":"black"})
overlay_file = "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/fMRI/GROUPlvl_SJ_CTRL_tT_extT_lh_projfrac05.mgz"
brain.add_overlay(overlay_file, min=3.11, max=10, sign="pos")
sig1 = io.read_scalar_data(overlay_file)
brain.add_overlay(sig1, 3.11, 10, name="sig1")
brain.overlays['sig1'].pos_bar.lut_mode = "Blues"
mayavi.mlab.view(azimuth=315, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_SJ_CTRL_tT_extT_lh_projfrac05_face1.png", size=None, figure=None, magnification='auto')
mayavi.mlab.view(azimuth=135, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_SJ_CTRL_tT_extT_lh_projfrac05_face2.png", size=None, figure=None, magnification='auto')
mayavi.mlab.view(azimuth=225, elevation=None, distance=None, focalpoint=None,
     roll=None, reset_roll=True, figure=None)
mayavi.mlab.savefig("/neurospin/unicog/protocols/IRMf/BENOIT_MT/BAPTISTE_FOLDER/PICTURES/MOD30-2/GROUPlvl_SJ_CTRL_tT_extT_lh_projfrac05_face3.png", size=None, figure=None, magnification='auto')
###################### RH #######################
brain = Brain("fsaverage", "rh", "inflated", config_opts={"cortex":"low_contrast","background":"black"})
overlay_file = "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/fMRI/GROUPlvl_SJ_CTRL_tT_extT_rh_projfrac05.mgz"
brain.add_overlay(overlay_file, min=3.11, max=10, sign="pos")
Esempio n. 16
0
import numpy as np
from surfer import io
from surfer import Brain

print(__doc__)

"""
Initialize the visualization.
"""
brain = Brain("fsaverage", "lh", "inflated", background="white")

"""
Read both of the activation maps in using
surfer's io functions.
"""
sig1 = io.read_scalar_data(op.join('example_data', "lh.sig.nii.gz"))
sig2 = io.read_scalar_data(op.join('example_data', "lh.alt_sig.nii.gz"))

"""
Zero out the vertices that do not meet a threshold.
"""
thresh = 4
sig1[sig1 < thresh] = 0
sig2[sig2 < thresh] = 0

"""
A conjunction is defined as the minimum significance
value between the two maps at each vertex.
"""
conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
Esempio n. 17
0
ranges = np.array([ get_range(sfile) for sfile in all_sfiles ])
dmin = ranges.min()
dmax = ranges.max()
print 'min=%.4f; max=%.4f' % (dmin,dmax)



###
# Overlap
###

no = {}
yes = {}
combined = {}
for hemi in ["lh", "rh"]:
    no[hemi]        = io.read_scalar_data(all_surf_files["no"][hemi])
    yes[hemi]       = io.read_scalar_data(all_surf_files["yes"][hemi])
    combined[hemi]  = np.min(np.vstack((no[hemi], yes[hemi])), axis=0)



###
# Plot
###

# Overlap
oprefix     = op.join(odir, "surface_compare_transformation")
for hemi in ["lh","rh"]:    
    brain   = fsaverage(hemi)
    
    surfov  = no[hemi]
Esempio n. 18
0
def vol_to_surf(infile,
                outprefix=None,
                interp="trilinear",
                hemis=["lh", "rh"]):
    """
    Transforms a volume from MNI to FSaverage space using mri_vol2surf.
    
    Parameters
    ----------
    infile : str
    outprefix : str or None (default: None)
        When outfile is None, the path will be autogenerated using tmpfile.
        The suffix of the file will be the hemi and .nii.gz.
    interp : str (default: trilinear)
        Can be 'nearest' or 'trilinear'.
    hemis : list (default: ['lh', 'rh'])
    
    Returns
    --------
    outfiles : dict
        For instance: `{'lh': 'file1', 'rh': 'file2'}`.
    outsurfs : dict
        For instance: `{'lh': surf_lh, 'rh': surf_rh}` where surf_* is an 
        `ndarray`.
    """

    if not op.exists(infile):
        raise Exception("Input for vol_to_surf '%s' doesn't exist" % infile)
    if outprefix is None:
        to_clean = True
        _, outprefix = tempfile.mkstemp()
    else:
        to_clean = False
    outfiles = {}
    outsurfs = {}

    templ_vars = dict(input=infile, interp=interp)
    for hemi in hemis:
        outfile = "%s_%s.nii.gz" % (outprefix, hemi)
        outfiles[hemi] = outfile

        templ_vars["hemi"] = hemi
        templ_vars["output"] = outfile

        cmd = "mri_vol2surf --mov %(input)s \
        --mni152reg --projfrac-max 0 1 0.1 \
        --interp %(interp)s --hemi %(hemi)s \
        --out %(output)s --reshape" % templ_vars

        print cmd
        p = Process(cmd)
        print p.stdout
        print p.stderr
        if p.retcode != 0:
            raise Exception("mri_vol2surf failed")

        outsurfs[hemi] = io.read_scalar_data(outfile)

    if to_clean:
        os.remove(outprefix)

    return (outfiles, outsurfs)
Esempio n. 19
0
easydir = easydirs[scan]
surf_files = {
    "lh": op.join(easydir, "surf_lh_thresh_zstat_FSIQ.nii.gz"), 
    "rh": op.join(easydir, "surf_rh_thresh_zstat_FSIQ.nii.gz")
}
ba_files = {
    "lh": "/home2/data/PublicProgram/freesurfer/fsaverage_copy/label/lh.PALS_B12_Brodmann.annot", 
    "rh": "/home2/data/PublicProgram/freesurfer/fsaverage_copy/label/rh.PALS_B12_Brodmann.annot", 
}


hemi    = "lh"

ba      = io.read_annot(ba_files[hemi])
cwas    = io.read_scalar_data(surf_files[hemi])

rois    = ba[0]
urois   = np.unique(rois); urois.sort()
labels  = np.array(ba[2])[urois]

cols    = ["index", "roi", "ba", "summary_wt", "summary_uwt", "meta_analysis"]
dict_df = { k : [] for k in cols }

for i,label in enumerate(labels):
    if label.find("Brodmann") == -1:
        continue
    
    ba          = int(label[9:])
    roi         = urois[i]
    summary_wt  = cwas[rois==roi].mean()
Esempio n. 20
0
dmax = ranges.max()
print 'min=%.4f; max=%.4f' % (dmin,dmax)

###


###
# Neurosynth
###

def run(cmd):
    print(cmd)
    os.system(cmd)

prefix      = "/home2/data/Projects/CWAS/results/20_cwas_iq/12_iq_surface/30_neurosynth_iq_surf_thresh"
neurosynth  = { hemi : io.read_scalar_data("%s_%s.nii.gz" % (prefix, hemi)) for hemi in ["lh", "rh"] }
all_ns      = neurosynth.values()

prefix      = op.join(odir, "surfs", "surf_ns_intelligence_all")
ns_orig_dir = op.join(base, "neurosynth/neurosynth/intelligence_001")
cmd         = "./x_vol2surf.py %s/_pAgF_z.nii.gz %s/_pAgF_z_FDR_0.05.nii.gz %s" % (ns_orig_dir, ns_orig_dir, prefix)
run(cmd)
ns_orig     = { hemi : io.read_scalar_data("%s_%s.nii.gz" % (prefix, hemi)) for hemi in ["lh", "rh"] }
all_ns      = ns_orig.values()

prefix      = "surf_ns_intelligence_fmri"
ns_fmri_dir = op.join(base, "neurosynth/neurosynth/intelligence_very_relevant_fmri")
cmd         = "./x_vol2surf.py %s/_pAgF_z.nii.gz %s/_pAgF_z_FDR_0.05.nii.gz %s" % (ns_fmri_dir, ns_fmri_dir, prefix)
run(cmd)
ns_fmri     = { hemi : io.read_scalar_data("%s_%s.nii.gz" % (prefix, hemi)) for hemi in ["lh", "rh"] }
all_ns      = ns_fmri.values()
Esempio n. 21
0
import numpy as np
from surfer import io
from surfer import Brain

"""
Initialize the visualization.
"""
brain = Brain("fsaverage", "lh", "inflated",
              config_opts=dict(background="white"))

"""
Read both of the activation maps in using
surfer's io functions.
"""
data_dir = op.join("example_data")
sig1 = io.read_scalar_data(op.join(data_dir, "lh.sig.nii.gz"))
sig2 = io.read_scalar_data(op.join(data_dir, "lh.alt_sig.nii.gz"))

"""
Zero out the vertices that do not meet a threshold.
"""
thresh = 4
sig1[sig1 < thresh] = 0
sig2[sig2 < thresh] = 0

"""
A conjunction is defined as the minimum significance
value between the two maps at each vertex.
"""
conjunct = np.min(np.vstack((sig1, sig2)), axis=0)
Esempio n. 22
0
print 'getting range'
ranges = np.array([get_range(sfile) for sfile in all_sfiles])
dmin = ranges.min()
dmax = ranges.max()
print 'min=%.4f; max=%.4f' % (dmin, dmax)

###
# Read surfaces
###

print "...reading surfaces"
surfs = {}
for measure in measures:
    surfs[measure] = {}
    for hemi in ["lh", "rh"]:
        tmp = io.read_scalar_data(all_surf_files[measure][hemi])
        surfs[measure][hemi] = tmp

###
# Plot
###

print "...plotting"

cbarfile = "/home2/data/Projects/CWAS/share/lib/surfwrap/colorbars/red-yellow.txt"
cbar = load_colorbar(cbarfile)

# Overlap
for measure in measures:
    oprefix = op.join(odir, "surf_%s" % measure)
    for hemi in ["lh", "rh"]: