Esempio n. 1
0
    def start(self, fps, fast_step=False):
        """Start

        Begin the continuous event loop for the simulation. This event loop
        can be exited using the ctrl+c keyboard interrupt. Real-time
        constraints are enforced. [Hz]

        Arguments:
            fps: The value of frames per second of the simulation.
            fast_step: If True, the ODE fast step algorithm will be used.
                This is faster and requires less memory but is less accurate.
                (Default: False)
        """
        paused = False
        stopped = False

        # Define the total time for the tooltip traversal
        t_total = 20.0

        # Define the simulation frame rate
        t = 0.0  # [s]
        dt = 1.0 / float(fps)  # [s]

        # Keep track of time overshoot in the case that simulation time must be
        # increased in order to maintain real-time constraints
        t_overshoot = 0.0

        # Get the initial path position (center of gate7)
        pos_start = self.env.get_body_pos('gate7')  # [m]

        # Get the first position of the PA10 at rest
        pos_init = self.env.get_body_pos('tooltip')  # [m]

        # Calculate the new required joint angles of the PA10
        #pa10_joint_angles = self.kinematics.calc_inverse_kinematics(pos_init, pos_start)

        # TODO: Move the PA10 end-effector to the starting position along the path

        # TODO: TEMP - Move the temporary end-effector pointer to the starting position
        self.env.set_group_pos('pointer', pos_start)

        # Generate long-term path from initial position
        t_input = np.linspace(start=0.0, stop=1.0, num=t_total / dt)
        t_input = np.reshape(t_input, (len(t_input), 1))

        rnn_path = self.rnn.extrapolate(t_input, [pos_start], len(t_input) - 1)

        # Add the initial condition point back onto the data
        rnn_path = np.vstack((pos_start, rnn_path))

        # Retrieve one set of standard gate position/orientation data
        file_path = pathutils.list_data_files(constants.G_TRAINING_DATA_DIR)[0]

        gate_data = datastore.retrieve(file_path)

        gate_start_idx = constants.G_GATE_IDX
        gate_end_idx = gate_start_idx + constants.G_NUM_GATE_INPUTS

        # Reshape the gate positions data
        gate_data = gate_data[0:1, gate_start_idx:gate_end_idx]
        gate_data = np.tile(gate_data, (len(rnn_path), 1))

        # Complete the rnn path data
        rnn_path = np.hstack((t_input, gate_data, rnn_path))

        # Save generated path for later examination
        datastore.store(rnn_path, constants.G_RNN_STATIC_PATH_OUT)

        # Define a variable to hold the final path (with real-time correction)
        final_path = rnn_path[:-1].copy()
        path_saved = False

        # Detect all path segments between gates in the generated path
        segments = pathutils._detect_segments(rnn_path)

        path_idx = 0

        x_path_offset = np.array([0.0, 0.0, 0.0])  # [m]
        v_curr = np.array([0.0, 0.0, 0.0])  # [m/s]
        a_max = constants.G_MAX_ACCEL  # [m/s^2]

        # Get the static table position
        x_table = self.env.get_body_pos('table')

        while not stopped:
            t_start = time.time()

            # If the last calculation took too long, catch up
            dt_warped = dt + t_overshoot

            self.env.set_dt(dt_warped)

            # Determine if the viewer is stopped. Then we can quit
            if self.viewer.is_dead:
                break

            # Pause the simulation if we are at the end
            if path_idx == len(rnn_path) - 1 or paused:
                self.env.step(paused=True, fast=fast_step)

                # If we have really hit the end of the simulation, save/plot the path
                if not paused and not path_saved:
                    # Save the final data to a file
                    datastore.store(final_path,
                                    constants.G_RNN_DYNAMIC_PATH_OUT)
                    path_saved = True

                continue

            # Not a very elegant solution to pausing at the start, but it works
            if t <= 1000.0:
                self.env.step(paused=True, fast=fast_step)
                t += dt_warped
                continue

            # Determine the current path segment
            curr_segment_idx = 0

            for segment_idx, segment_end in enumerate(segments):
                if path_idx <= segment_end:
                    curr_segment_idx = segment_idx
                    break

            x_curr = pathutils.get_path_tooltip_pos(rnn_path,
                                                    path_idx) + x_path_offset
            x_next = pathutils.get_path_tooltip_pos(
                rnn_path, path_idx + 1) + x_path_offset

            # Get the expected gate position
            x_gate_expected = pathutils.get_path_gate_pos(
                rnn_path, segments[curr_segment_idx], curr_segment_idx)

            # Get the actual gate position
            x_gate_actual = self.env.get_body_pos('gate%d' % curr_segment_idx)

            # Calculate the new position from change to new gate position
            dx_gate = x_gate_actual - (x_gate_expected + x_path_offset)
            x_new = x_next + dx_gate

            # Calculate the new velocity
            v_new = (x_new - x_curr) / dt_warped

            # Calculate the new acceleration
            a_new = (v_new - v_curr) / dt_warped

            # Calculate the acceleration vector norm
            a_new_norm = np.linalg.norm(a_new)

            # Limit the norm vector
            a_new_norm_clipped = np.clip(a_new_norm, -a_max, a_max)

            # Determine the ratio of the clipped norm, protect against divide by zero
            if a_new_norm != 0.0:
                ratio_unclipped = a_new_norm_clipped / a_new_norm
            else:
                ratio_unclipped = 0.0

            # Scale the acceleration vector by this ratio
            a_new = a_new * ratio_unclipped

            # Calculate the new change in velocity
            dv_new = a_new * dt_warped
            v_new = v_curr + dv_new

            # Calculate the new change in position
            dx_new = v_new * dt_warped
            x_new = x_curr + dx_new

            # Modify final path data with current tooltip and gate positions
            pathutils.set_path_time(final_path, path_idx, t)
            pathutils.set_path_tooltip_pos(final_path, path_idx, x_curr)

            for gate_idx in range(constants.G_NUM_GATES):
                gate_name = 'gate%d' % gate_idx
                x_gate = self.env.get_body_pos(gate_name)
                pathutils.set_path_gate_pos(final_path, path_idx, gate_idx,
                                            x_gate)

            # Store this velocity for the next time step
            v_curr = v_new

            # Recalculate the current offset
            x_path_offset += x_new - x_next

            # Perform inverse kinematics to get joint angles
            pa10_joint_angles = self.kinematics.calc_inverse_kinematics(
                x_curr, x_new)

            # TODO: TEMP - MOVE ONLY POINTER, NO PA10
            self.env.set_group_pos('pointer', x_new)

            if constants.G_TABLE_IS_OSCILLATING:
                # Move the table with y-axis oscillation
                x_table_next = shaker_table(t, x_table)
            else:
                x_table_next = x_table

            self.env.set_body_pos('table', x_table_next)

            # Step through the world by 1 time frame and actuate pa10 joints
            self.env.performAction(pa10_joint_angles, fast=fast_step)

            # Update current time after this step
            t += dt_warped
            path_idx += 1

            # Determine the difference in virtual vs actual time
            t_warped = dt - (time.time() - t_start)

            # Attempt to enforce real-time constraints
            if t_warped >= 0.0:
                # The calculation took less time than the virtual time. Sleep
                # the rest off
                time.sleep(t_warped)
                t_overshoot = 0.0
            else:
                # The calculation took more time than the virtual time. We need
                # to catch up with the virtual time on the next time step
                t_overshoot = -t_warped

        return
Esempio n. 2
0
def train_path_planning_network():
    """Train Path Planning Network

    Trains an Evolino LSTM neural network for long-term path planning for
    use in the surgical simulator.

    Returns:
        A copy of the fully-trained path planning neural network.
    """
    # Build up the list of files to use as training set
    training_dir = constants.G_TRAINING_DATA_DIR

    # Find all data files in the training data directory
    training_files = pathutils.list_data_files(training_dir)

    # Get the training data and place it into a dataset
    training_dataset = None

    # Store all training set ratings
    ratings = np.array([])

    for training_file in training_files:
        training_data = datastore.retrieve(training_file)

        # Normalize the time input of the data
        training_data = pathutils.normalize_time(training_data, t_col=constants.G_TIME_IDX)

        # Add this data sample to the training dataset
        training_dataset = datastore.list_to_dataset(
            training_data[:,constants.G_RNN_INPUT_IDX:constants.G_RNN_INPUT_IDX+constants.G_RNN_NUM_INPUTS],
            training_data[:,constants.G_RNN_OUTPUT_IDX:constants.G_RNN_OUTPUT_IDX+constants.G_RNN_NUM_OUTPUTS],
            dataset=training_dataset
        )

        # Store the rating of the data
        this_rating = training_data[1:,constants.G_RATING_IDX]
        ratings = np.hstack((ratings, this_rating))


    # Get the starting point information for testing
    output_start_idx = constants.G_RNN_OUTPUT_IDX
    output_end_idx = output_start_idx + constants.G_RNN_NUM_OUTPUTS

    output_initial_condition = training_data[0,output_start_idx:output_end_idx]
    
    # Generate the time sequence input data for testing
    time_steps = constants.G_RNN_GENERATED_TIME_STEPS
    t_input = np.linspace(start=0.0, stop=1.0, num=time_steps)
    t_input = np.reshape(t_input, (len(t_input), 1))

    gate_start_idx = constants.G_GATE_IDX
    gate_end_idx = gate_start_idx + constants.G_NUM_GATE_INPUTS

    # Pull the gate data from the last training dataset
    gate_data = training_data[0:1,gate_start_idx:gate_end_idx]
    gate_data = np.tile(gate_data, (time_steps, 1))

    # Build up a full ratings matrix
    nd_ratings = None

    for rating in ratings:
        this_rating = rating * np.ones((1, constants.G_RNN_NUM_OUTPUTS))

        if nd_ratings is None:
            nd_ratings = this_rating
        else:
            nd_ratings = np.vstack((nd_ratings, this_rating))

    # Create network and trainer
    print('>>> Building Network...')
    net = PathPlanningNetwork()

    print('>>> Initializing Trainer...')
    trainer = PathPlanningTrainer(
        evolino_network=net,
        dataset=training_dataset,
        nBurstMutationEpochs=10,
        importance=nd_ratings
    )

    # Begin the training iterations
    fitness_list = []
    max_fitness = None
    max_fitness_epoch = None

    # Draw the generated path plot
    fig = plt.figure(1, facecolor='white')
    testing_axis = fig.add_subplot(111, projection='3d')

    fig.show()

    idx = 0
    current_convergence_streak = 0
    
    while True:
        print('>>> Training Network (Iteration: %3d)...' % (idx+1))
        trainer.train()

        # Determine fitness of this network
        current_fitness = trainer.evaluation.max_fitness
        fitness_list.append(current_fitness)

        print('>>> FITNESS: %f' % current_fitness)

        # Determine if this is the minimal error network
        if max_fitness is None or max_fitness < current_fitness:
            # This is the minimum, record it
            max_fitness = current_fitness
            max_fitness_epoch = idx

        # Draw the generated path after training
        print('>>> Testing Network...')

        generated_output = net.extrapolate(t_input, [output_initial_condition], len(t_input)-1)
        generated_output = np.vstack((output_initial_condition, generated_output))

        generated_input = np.hstack((t_input, gate_data))

        # Smash together the input and output
        generated_data = np.hstack((generated_input, generated_output))

        print('>>> Drawing Generated Path...')
        pathutils.display_path(testing_axis, generated_data, title='Generated Testing Path')
       
        plt.draw()

        if current_fitness > constants.G_RNN_CONVERGENCE_THRESHOLD:
            # We've encountered a fitness higher than threshold
            current_convergence_streak += 1
        else:
            # Streak ended. Reset the streak counter
            current_convergence_streak = 0

        if current_convergence_streak == constants.G_RNN_REQUIRED_CONVERGENCE_STREAK:
            print('>>> Convergence Achieved: %d Iterations' % idx)
            break
        elif idx == constants.G_RNN_MAX_ITERATIONS - 1:
            print('>>> Reached maximum iterations (%d)' % constants.G_RNN_MAX_ITERATIONS)
            break

        idx += 1

    # Draw the iteration fitness plot
    plt.figure(facecolor='white')
    plt.cla()
    plt.title('Fitness of RNN over %d Iterations' % (idx-1))
    plt.xlabel('Training Iterations')
    plt.ylabel('Fitness')
    plt.grid(True)

    plt.plot(range(len(fitness_list)), fitness_list, 'r-')

    plt.annotate('local max', xy=(max_fitness_epoch, fitness_list[max_fitness_epoch]),
            xytext=(max_fitness_epoch, fitness_list[max_fitness_epoch]+0.01),
            arrowprops=dict(facecolor='black', shrink=0.05))

    plt.show()

    # Return a full copy of the trained neural network
    return copy.deepcopy(net)
Esempio n. 3
0
    def start(self, fps, fast_step=False):
        """Start

        Begin the continuous event loop for the simulation. This event loop
        can be exited using the ctrl+c keyboard interrupt. Real-time
        constraints are enforced. [Hz]

        Arguments:
            fps: The value of frames per second of the simulation.
            fast_step: If True, the ODE fast step algorithm will be used.
                This is faster and requires less memory but is less accurate.
                (Default: False)
        """
        paused = False
        stopped = False

        # Define the total time for the tooltip traversal
        t_total = 20.0

        # Define the simulation frame rate
        t = 0.0 # [s]
        dt = 1.0 / float(fps) # [s]

        # Keep track of time overshoot in the case that simulation time must be
        # increased in order to maintain real-time constraints
        t_overshoot = 0.0

        # Get the initial path position (center of gate7)
        pos_start = self.env.get_body_pos('gate7') # [m]

        # Get the first position of the PA10 at rest
        pos_init = self.env.get_body_pos('tooltip') # [m]

        # Calculate the new required joint angles of the PA10
        #pa10_joint_angles = self.kinematics.calc_inverse_kinematics(pos_init, pos_start)

        # TODO: Move the PA10 end-effector to the starting position along the path

        # TODO: TEMP - Move the temporary end-effector pointer to the starting position
        self.env.set_group_pos('pointer', pos_start)

        # Generate long-term path from initial position
        t_input = np.linspace(start=0.0, stop=1.0, num=t_total/dt)
        t_input = np.reshape(t_input, (len(t_input), 1))

        rnn_path = self.rnn.extrapolate(t_input, [pos_start], len(t_input)-1)

        # Add the initial condition point back onto the data
        rnn_path = np.vstack((pos_start, rnn_path))

        # Retrieve one set of standard gate position/orientation data
        file_path = pathutils.list_data_files(constants.G_TRAINING_DATA_DIR)[0]

        gate_data = datastore.retrieve(file_path)

        gate_start_idx = constants.G_GATE_IDX
        gate_end_idx = gate_start_idx + constants.G_NUM_GATE_INPUTS

        # Reshape the gate positions data
        gate_data = gate_data[0:1,gate_start_idx:gate_end_idx]
        gate_data = np.tile(gate_data, (len(rnn_path), 1))

        # Complete the rnn path data
        rnn_path = np.hstack((t_input, gate_data, rnn_path))

        # Save generated path for later examination
        datastore.store(rnn_path, constants.G_RNN_STATIC_PATH_OUT)

        # Define a variable to hold the final path (with real-time correction)
        final_path = rnn_path[:-1].copy()
        path_saved = False

        # Detect all path segments between gates in the generated path
        segments = pathutils._detect_segments(rnn_path)

        path_idx = 0

        x_path_offset = np.array([0.0, 0.0, 0.0]) # [m]
        v_curr = np.array([0.0, 0.0, 0.0]) # [m/s]
        a_max = constants.G_MAX_ACCEL # [m/s^2]

        # Get the static table position
        x_table = self.env.get_body_pos('table')

        while not stopped:
            t_start = time.time()

            # If the last calculation took too long, catch up
            dt_warped = dt + t_overshoot

            self.env.set_dt(dt_warped)

            # Determine if the viewer is stopped. Then we can quit
            if self.viewer.is_dead:
                break

            # Pause the simulation if we are at the end
            if path_idx == len(rnn_path) - 1 or paused:
                self.env.step(paused=True, fast=fast_step)

                # If we have really hit the end of the simulation, save/plot the path
                if not paused and not path_saved:
                    # Save the final data to a file
                    datastore.store(final_path, constants.G_RNN_DYNAMIC_PATH_OUT)
                    path_saved = True

                continue

            # Not a very elegant solution to pausing at the start, but it works
            if t <= 1000.0:
                self.env.step(paused=True, fast=fast_step)
                t += dt_warped
                continue

            # Determine the current path segment
            curr_segment_idx = 0

            for segment_idx, segment_end in enumerate(segments):
                if path_idx <= segment_end:
                    curr_segment_idx = segment_idx
                    break

            x_curr = pathutils.get_path_tooltip_pos(rnn_path, path_idx) + x_path_offset
            x_next = pathutils.get_path_tooltip_pos(rnn_path, path_idx+1) + x_path_offset

            # Get the expected gate position
            x_gate_expected = pathutils.get_path_gate_pos(
                    rnn_path,
                    segments[curr_segment_idx],
                    curr_segment_idx
            )

            # Get the actual gate position
            x_gate_actual = self.env.get_body_pos('gate%d'%curr_segment_idx)

            # Calculate the new position from change to new gate position
            dx_gate = x_gate_actual - (x_gate_expected + x_path_offset)
            x_new = x_next + dx_gate

            # Calculate the new velocity
            v_new = (x_new - x_curr) / dt_warped

            # Calculate the new acceleration
            a_new = (v_new - v_curr) / dt_warped

            # Calculate the acceleration vector norm
            a_new_norm = np.linalg.norm(a_new)

            # Limit the norm vector
            a_new_norm_clipped = np.clip(a_new_norm, -a_max, a_max)

            # Determine the ratio of the clipped norm, protect against divide by zero
            if a_new_norm != 0.0:
                ratio_unclipped = a_new_norm_clipped / a_new_norm
            else:
                ratio_unclipped = 0.0

            # Scale the acceleration vector by this ratio
            a_new = a_new * ratio_unclipped

            # Calculate the new change in velocity
            dv_new = a_new * dt_warped
            v_new = v_curr + dv_new

            # Calculate the new change in position
            dx_new = v_new * dt_warped
            x_new = x_curr + dx_new

            # Modify final path data with current tooltip and gate positions
            pathutils.set_path_time(final_path, path_idx, t)
            pathutils.set_path_tooltip_pos(final_path, path_idx, x_curr)

            for gate_idx in range(constants.G_NUM_GATES):
                gate_name = 'gate%d' % gate_idx
                x_gate = self.env.get_body_pos(gate_name)
                pathutils.set_path_gate_pos(final_path, path_idx, gate_idx, x_gate)

            # Store this velocity for the next time step
            v_curr = v_new

            # Recalculate the current offset
            x_path_offset += x_new - x_next

            # Perform inverse kinematics to get joint angles
            pa10_joint_angles = self.kinematics.calc_inverse_kinematics(x_curr, x_new)

            # TODO: TEMP - MOVE ONLY POINTER, NO PA10
            self.env.set_group_pos('pointer', x_new)

            if constants.G_TABLE_IS_OSCILLATING:
                # Move the table with y-axis oscillation
                x_table_next = shaker_table(t, x_table)
            else:
                x_table_next = x_table

            self.env.set_body_pos('table', x_table_next)

            # Step through the world by 1 time frame and actuate pa10 joints
            self.env.performAction(pa10_joint_angles, fast=fast_step)

            # Update current time after this step
            t += dt_warped
            path_idx += 1

            # Determine the difference in virtual vs actual time
            t_warped = dt - (time.time() - t_start)

            # Attempt to enforce real-time constraints
            if t_warped >= 0.0:
                # The calculation took less time than the virtual time. Sleep
                # the rest off
                time.sleep(t_warped)
                t_overshoot = 0.0
            else:
                # The calculation took more time than the virtual time. We need
                # to catch up with the virtual time on the next time step
                t_overshoot = -t_warped

        return