Esempio n. 1
0
    def test_surjection_is_well_behaved(self):
        batch_size = 10
        shape = [8, 4, 4]
        x = torch.randn(batch_size, *shape)
        surjections = [
            (Augment(StandardNormal([1, 4, 4]), x_size=8,
                     split_dim=1), (9, 4, 4)),
            (Augment(StandardNormal([4, 4, 4]), x_size=8,
                     split_dim=1), (12, 4, 4)),
            (Augment(StandardNormal([7, 4, 4]), x_size=8,
                     split_dim=1), (15, 4, 4)),
            (Augment(StandardNormal([8, 2, 4]), x_size=4,
                     split_dim=2), (8, 6, 4)),
            (Augment(StandardNormal([8, 4, 2]), x_size=4,
                     split_dim=3), (8, 4, 6)),
            (Augment(ConditionalMeanNormal(nn.Conv2d(8, 1, kernel_size=1)),
                     x_size=8,
                     split_dim=1), (9, 4, 4)),
            (Augment(ConditionalMeanNormal(nn.Conv2d(8, 4, kernel_size=1)),
                     x_size=8,
                     split_dim=1), (12, 4, 4)),
            (Augment(ConditionalMeanNormal(nn.Conv2d(8, 7, kernel_size=1)),
                     x_size=8,
                     split_dim=1), (15, 4, 4))
        ]

        for surjection, new_shape in surjections:
            with self.subTest(surjection=surjection):
                self.assert_surjection_is_well_behaved(surjection,
                                                       x,
                                                       z_shape=(batch_size,
                                                                *new_shape),
                                                       z_dtype=x.dtype)
Esempio n. 2
0
    def __init__(self, num_flows, actnorm, affine, scale_fn_str, hidden_units,
                 activation, range_flow, augment_size, base_dist, cond_size):

        D = 2  # Number of data dimensions
        A = D + augment_size  # Number of augmented data dimensions
        P = 2 if affine else 1  # Number of elementwise parameters

        # initialize context. Only upsample context in ContextInit if latent shape doesn't change during the flow.
        context_init = MLP(input_size=cond_size,
                           output_size=D,
                           hidden_units=hidden_units,
                           activation=activation)

        # initialize flow with either augmentation or Abs surjection
        if augment_size > 0:
            assert augment_size % 2 == 0
            transforms = [Augment(StandardNormal((augment_size, )), x_size=D)]

        else:
            transforms = []
            transforms = [SimpleAbsSurjection()]
            if range_flow == 'logit':
                transforms += [
                    ScaleBijection(scale=torch.tensor([[1 / 4, 1 / 4]])),
                    Logit()
                ]
            elif range_flow == 'softplus':
                transforms += [SoftplusInverse()]

        # apply coupling layer flows
        for _ in range(num_flows):
            net = nn.Sequential(
                MLP(A // 2 + D,
                    P * A // 2,
                    hidden_units=hidden_units,
                    activation=activation), ElementwiseParams(P))
            if affine:
                transforms.append(
                    ConditionalAffineCouplingBijection(
                        net, scale_fn=scale_fn(scale_fn_str)))
            else:
                transforms.append(ConditionalAdditiveCouplingBijection(net))
            if actnorm: transforms.append(ActNormBijection(D))
            transforms.append(Reverse(A))

        transforms.pop()

        if base_dist == "uniform":
            base = StandardUniform((A, ))
        else:
            base = StandardNormal((A, ))

        super(SRFlow, self).__init__(base_dist=base,
                                     transforms=transforms,
                                     context_init=context_init)
Esempio n. 3
0
    return nn.Sequential(
        DenseNet(in_channels=channels // 2,
                 out_channels=channels,
                 num_blocks=1,
                 mid_channels=64,
                 depth=8,
                 growth=16,
                 dropout=0.0,
                 gated_conv=True,
                 zero_init=True), ElementwiseParams2d(2))


model = Flow(base_dist=StandardNormal((24, 8, 8)),
             transforms=[
                 UniformDequantization(num_bits=8),
                 Augment(StandardUniform((3, 32, 32)), x_size=3),
                 AffineCouplingBijection(net(6)),
                 ActNormBijection2d(6),
                 Conv1x1(6),
                 AffineCouplingBijection(net(6)),
                 ActNormBijection2d(6),
                 Conv1x1(6),
                 AffineCouplingBijection(net(6)),
                 ActNormBijection2d(6),
                 Conv1x1(6),
                 AffineCouplingBijection(net(6)),
                 ActNormBijection2d(6),
                 Conv1x1(6),
                 Squeeze2d(),
                 Slice(StandardNormal((12, 16, 16)), num_keep=12),
                 AffineCouplingBijection(net(12)),
Esempio n. 4
0
    def __init__(self,
                 data_shape,
                 cond_shape,
                 num_bits,
                 num_scales,
                 num_steps,
                 actnorm,
                 conditional_channels,
                 lowres_encoder_channels,
                 lowres_encoder_blocks,
                 lowres_encoder_depth,
                 lowres_upsampler_channels,
                 pooling,
                 compression_ratio,
                 coupling_network,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout=0.0,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None,
                 dequant="flow",
                 dequant_steps=4,
                 dequant_context=32,
                 dequant_blocks=2,
                 augment_steps=4,
                 augment_context=32,
                 augment_blocks=2,
                 augment_size=None,
                 checkerboard_scales=[],
                 tuple_flip=True):

        if len(compression_ratio) == 1 and num_scales > 1:
            compression_ratio = [compression_ratio[0]] * (num_scales - 1)
        assert all([
            compression_ratio[s] >= 0.0 and compression_ratio[s] < 1.0
            for s in range(num_scales - 1)
        ])

        # initialize context. Only upsample context in ContextInit if latent shape doesn't change during the flow.
        context_init = ContextInit(num_bits=num_bits,
                                   in_channels=cond_shape[0],
                                   out_channels=lowres_encoder_channels,
                                   mid_channels=lowres_encoder_channels,
                                   num_blocks=lowres_encoder_blocks,
                                   depth=lowres_encoder_depth,
                                   dropout=coupling_dropout)

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=dequant_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                dropout=0.0,
                gated_conv=False,
                num_mixtures=coupling_mixtures,
                checkerboard=True,
                tuple_flip=tuple_flip)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeezing
        if current_shape[1] >= 128 and current_shape[2] >= 128:
            # H x W -> 64 x 64
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if current_shape[1] >= 64 and current_shape[2] >= 64:
            # H x W -> 32 x 32
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if 0 not in checkerboard_scales or (current_shape[1] > 32
                                            and current_shape[2] > 32):
            # Only go to 16 x 16 if not doing checkerboard splits first
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        # add in augmentation channels if desired
        if augment_size is not None and augment_size > 0:
            #transforms.append(Augment(StandardUniform((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            #transforms.append(Augment(StandardNormal((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0]))
            augment_flow = AugmentFlow(data_shape=current_shape,
                                       augment_size=augment_size,
                                       num_steps=augment_steps,
                                       coupling_network=coupling_network,
                                       mid_channels=coupling_channels,
                                       num_context=augment_context,
                                       num_mixtures=coupling_mixtures,
                                       num_blocks=augment_blocks,
                                       dropout=0.0,
                                       checkerboard=True,
                                       tuple_flip=tuple_flip)
            transforms.append(
                Augment(encoder=augment_flow, x_size=current_shape[0]))
            current_shape = (current_shape[0] + augment_size, current_shape[1],
                             current_shape[2])

        for scale in range(num_scales):

            # First and Third scales use checkerboard split pattern
            checkerboard = scale in checkerboard_scales
            context_out_channels = min(current_shape[0], coupling_channels)
            context_out_shape = (context_out_channels, current_shape[1],
                                 current_shape[2] //
                                 2) if checkerboard else (context_out_channels,
                                                          current_shape[1],
                                                          current_shape[2])

            # reshape the context to the current size for all flow steps at this scale
            context_upsampler_net = UpsamplerNet(
                in_channels=lowres_encoder_channels,
                out_shape=context_out_shape,
                mid_channels=lowres_upsampler_channels)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='forward'))

            for step in range(num_steps):

                flip = (step % 2 == 0) if tuple_flip else False

                if len(conditional_channels) == 0:
                    if actnorm:
                        transforms.append(ActNormBijection2d(current_shape[0]))
                    transforms.append(Conv1x1(current_shape[0]))
                else:
                    if actnorm:
                        transforms.append(
                            ConditionalActNormBijection2d(
                                cond_shape=current_shape,
                                out_channels=current_shape[0],
                                mid_channels=conditional_channels))
                    transforms.append(
                        ConditionalConv1x1(cond_shape=current_shape,
                                           out_channels=current_shape[0],
                                           mid_channels=conditional_channels,
                                           slogdet_cpu=True))

                if coupling_network in ["conv", "densenet"]:
                    transforms.append(
                        SRCoupling(x_size=context_out_shape,
                                   y_size=current_shape,
                                   mid_channels=coupling_channels,
                                   depth=coupling_depth,
                                   num_blocks=coupling_blocks,
                                   dropout=coupling_dropout,
                                   gated_conv=coupling_gated_conv,
                                   coupling_network=coupling_network,
                                   checkerboard=checkerboard,
                                   flip=flip))

                elif coupling_network == "transformer":
                    transforms.append(
                        SRMixtureCoupling(x_size=context_out_shape,
                                          y_size=current_shape,
                                          mid_channels=coupling_channels,
                                          dropout=coupling_dropout,
                                          num_blocks=coupling_blocks,
                                          num_mixtures=coupling_mixtures,
                                          checkerboard=checkerboard,
                                          flip=flip))

            # Upsample context (for the previous flows, only if moving in the inverse direction)
            transforms.append(
                ContextUpsampler(context_net=context_upsampler_net,
                                 direction='inverse'))

            if scale < num_scales - 1:
                if pooling == 'none' or compression_ratio[scale] == 0.0:
                    # fully bijective flow with multi-scale architecture
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'slice':
                    # slice some of the dimensions (channel-wise) out from further flow steps
                    unsliced_channels = int(
                        max(
                            1, 4 * current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    sliced_channels = int(4 * current_shape[0] -
                                          unsliced_channels)
                    noise_shape = (sliced_channels, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=unsliced_channels,
                              dim=1))
                    current_shape = (unsliced_channels, current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'max':
                    # max pooling to compress dimensions spatially, h//2 and w//2
                    noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                    current_shape = (current_shape[0], current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == "mvae":
                    # Compressive flow: reduce the dimensionality of data by 2 (channel-wise)
                    compressed_channels = max(
                        1,
                        int(current_shape[0] *
                            (1.0 - compression_ratio[scale])))
                    latent_size = compressed_channels * current_shape[
                        1] * current_shape[2]
                    vae_channels = [
                        current_shape[0] * 2, current_shape[0] * 4,
                        current_shape[0] * 8
                    ]
                    encoder = ConditionalNormal(ConvEncoderNet(
                        in_channels=current_shape[0],
                        out_channels=latent_size,
                        mid_channels=vae_channels,
                        max_pool=True,
                        batch_norm=True),
                                                split_dim=1)
                    decoder = ConditionalNormal(ConvDecoderNet(
                        in_channels=latent_size,
                        out_shape=(current_shape[0] * 2, current_shape[1],
                                   current_shape[2]),
                        mid_channels=list(reversed(vae_channels)),
                        batch_norm=True,
                        in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1
                                                   )),
                                                split_dim=1)
                    transforms.append(VAE(encoder=encoder, decoder=decoder))
                    transforms.append(
                        Reshape(input_shape=(latent_size, ),
                                output_shape=(compressed_channels,
                                              current_shape[1],
                                              current_shape[2])))

                    # after reducing channels with mvae, squeeze to reshape latent space before another sequence of flows
                    transforms.append(Squeeze2d())
                    current_shape = (
                        compressed_channels * 4,  # current_shape[0] * 4
                        current_shape[1] // 2,
                        current_shape[2] // 2)

                else:
                    raise ValueError(
                        "pooling argument must be either mvae, slice, max, or none"
                    )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.latent_size = current_shape[0] * current_shape[1] * current_shape[
            2]
        self.flow_shape = current_shape

        super(SRPoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                         transforms=transforms,
                                         context_init=context_init)
Esempio n. 5
0
## Specify data ##
##################

train_loader, test_loader = get_data(args)

###################
## Specify model ##
###################

assert args.augdim % 2 == 0

D = 2  # Number of data dimensions
A = 2 + args.augdim  # Number of augmented data dimensions
P = 2 if args.affine else 1  # Number of elementwise parameters

transforms = [Augment(StandardNormal((args.augdim, )), x_size=D)]
for _ in range(args.num_flows):
    net = nn.Sequential(
        MLP(A // 2,
            P * A // 2,
            hidden_units=args.hidden_units,
            activation=args.activation), ElementwiseParams(P))
    if args.affine:
        transforms.append(
            AffineCouplingBijection(net, scale_fn=scale_fn(args.scale_fn)))
    else:
        transforms.append(AdditiveCouplingBijection(net))
    if args.actnorm: transforms.append(ActNormBijection(D))
    transforms.append(Reverse(A))
transforms.pop()
Esempio n. 6
0
    def __init__(self, num_flows, actnorm, affine, scale_fn_str, hidden_units,
                 activation, range_flow, augment_size, base_dist):

        D = 2  # Number of data dimensions

        if base_dist == "uniform":
            classifier = MLP(D,
                             D // 2,
                             hidden_units=hidden_units,
                             activation=activation,
                             out_lambda=lambda x: x.view(-1))
            transforms = [
                ElementAbsSurjection(classifier=classifier),
                ShiftBijection(shift=torch.tensor([[0.0, 4.0]])),
                ScaleBijection(scale=torch.tensor([[1 / 4, 1 / 8]]))
            ]
            base = StandardUniform((D, ))

        else:
            A = D + augment_size  # Number of augmented data dimensions
            P = 2 if affine else 1  # Number of elementwise parameters

            # initialize flow with either augmentation or Abs surjection
            if augment_size > 0:
                assert augment_size % 2 == 0
                transforms = [
                    Augment(StandardNormal((augment_size, )), x_size=D)
                ]

            else:
                transforms = [SimpleAbsSurjection()]
                if range_flow == 'logit':
                    transforms += [
                        ScaleBijection(scale=torch.tensor([[1 / 4, 1 / 4]])),
                        Logit()
                    ]
                elif range_flow == 'softplus':
                    transforms += [SoftplusInverse()]

            # apply coupling layer flows
            for _ in range(num_flows):
                net = nn.Sequential(
                    MLP(A // 2,
                        P * A // 2,
                        hidden_units=hidden_units,
                        activation=activation), ElementwiseParams(P))

                if affine:
                    transforms.append(
                        AffineCouplingBijection(
                            net, scale_fn=scale_fn(scale_fn_str)))
                else:
                    transforms.append(AdditiveCouplingBijection(net))
                if actnorm: transforms.append(ActNormBijection(D))
                transforms.append(Reverse(A))

            transforms.pop()
            base = StandardNormal((A, ))

        super(UnconditionalFlow, self).__init__(base_dist=base,
                                                transforms=transforms)
Esempio n. 7
0
def reduction_layer(channels, items):
    return [
        *perm_norm_bi(channels),
        *perm_norm_bi(channels),
        *perm_norm_bi(channels),
        Squeeze2d(4),
        Slice(StandardNormal((channels * 2, items)), num_keep=channels * 2),
    ]


model = Flow(
    base_dist=StandardNormal((base_channels * (2**5), n_items // (4**4))),
    transforms=[
        UniformDequantization(num_bits=8),
        Augment(StandardUniform((base_channels * 1, n_items)),
                x_size=base_channels),
        *reduction_layer(base_channels * (2**1), n_items // (4**1)),
        *reduction_layer(base_channels * (2**2), n_items // (4**2)),
        *reduction_layer(base_channels * (2**3), n_items // (4**3)),
        *reduction_layer(base_channels * (2**4), n_items // (4**4)),
        # *reduction_layer(base_channels*(2**5), n_items//(4**4)),
        *perm_norm_bi(base_channels * (2**5))

        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
        # Squeeze2d(), Slice(StandardNormal((base_channels*2, n_items//4)), num_keep=base_channels*2),
        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
        # AffineCouplingBijection(net(base_channels*2)), ActNormBijection2d(base_channels*2), Conv1x1(base_channels*2),
    ]).to(device)
Esempio n. 8
0
    def __init__(self,
                 data_shape,
                 num_bits,
                 num_scales,
                 num_steps,
                 actnorm,
                 pooling,
                 compression_ratio,
                 coupling_network,
                 coupling_blocks,
                 coupling_channels,
                 coupling_dropout=0.0,
                 coupling_gated_conv=None,
                 coupling_depth=None,
                 coupling_mixtures=None,
                 dequant="flow",
                 dequant_steps=4,
                 dequant_context=32,
                 dequant_blocks=2,
                 augment_steps=4,
                 augment_context=32,
                 augment_blocks=2,
                 augment_size=None,
                 checkerboard_scales=[],
                 tuple_flip=True):

        if len(compression_ratio) == 1 and num_scales > 1:
            compression_ratio = [compression_ratio[0]] * (num_scales - 1)
        assert all([
            compression_ratio[s] >= 0 and compression_ratio[s] < 1
            for s in range(num_scales - 1)
        ])

        transforms = []
        current_shape = data_shape
        if dequant == 'uniform':
            transforms.append(UniformDequantization(num_bits=num_bits))
        elif dequant == 'flow':
            dequantize_flow = DequantizationFlow(
                data_shape=data_shape,
                num_bits=num_bits,
                num_steps=dequant_steps,
                coupling_network=coupling_network,
                num_context=dequant_context,
                num_blocks=dequant_blocks,
                mid_channels=coupling_channels,
                depth=coupling_depth,
                dropout=0.0,
                gated_conv=False,
                num_mixtures=coupling_mixtures,
                checkerboard=True,
                tuple_flip=tuple_flip)
            transforms.append(
                VariationalDequantization(encoder=dequantize_flow,
                                          num_bits=num_bits))

        # Change range from [0,1]^D to [-0.5, 0.5]^D
        transforms.append(ScalarAffineBijection(shift=-0.5))

        # Initial squeezing
        if current_shape[1] >= 128 and current_shape[2] >= 128:
            # H x W -> 64 x 64
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if current_shape[1] >= 64 and current_shape[2] >= 64:
            # H x W -> 32 x 32
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        if 0 not in checkerboard_scales or (current_shape[1] > 32
                                            and current_shape[2] > 32):
            # Only go to 16 x 16 if not doing checkerboard splits first
            transforms.append(Squeeze2d())
            current_shape = (current_shape[0] * 4, current_shape[1] // 2,
                             current_shape[2] // 2)

        # add in augmentation channels if desired
        if augment_size is not None and augment_size > 0:
            augment_flow = AugmentFlow(data_shape=current_shape,
                                       augment_size=augment_size,
                                       num_steps=augment_steps,
                                       coupling_network=coupling_network,
                                       mid_channels=coupling_channels,
                                       num_context=augment_context,
                                       num_mixtures=coupling_mixtures,
                                       num_blocks=augment_blocks,
                                       dropout=0.0,
                                       checkerboard=True,
                                       tuple_flip=tuple_flip)
            transforms.append(
                Augment(encoder=augment_flow, x_size=current_shape[0]))
            current_shape = (current_shape[0] + augment_size, current_shape[1],
                             current_shape[2])

        for scale in range(num_scales):
            checkerboard = scale in checkerboard_scales

            for step in range(num_steps):
                flip = (step % 2 == 0) if tuple_flip else False

                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))
                transforms.append(Conv1x1(current_shape[0]))

                if coupling_network == "conv":
                    transforms.append(
                        Coupling(in_channels=current_shape[0],
                                 num_blocks=coupling_blocks,
                                 mid_channels=coupling_channels,
                                 depth=coupling_depth,
                                 dropout=coupling_dropout,
                                 gated_conv=coupling_gated_conv,
                                 coupling_network=coupling_network,
                                 checkerboard=checkerboard,
                                 flip=flip))
                else:
                    transforms.append(
                        MixtureCoupling(in_channels=current_shape[0],
                                        mid_channels=coupling_channels,
                                        num_mixtures=coupling_mixtures,
                                        num_blocks=coupling_blocks,
                                        dropout=coupling_dropout,
                                        checkerboard=checkerboard,
                                        flip=flip))

            if scale < num_scales - 1:
                if pooling in ['bijective', 'none'
                               ] or compression_ratio[scale] == 0.0:
                    transforms.append(Squeeze2d())
                    current_shape = (current_shape[0] * 4,
                                     current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'slice':
                    # slice some of the dimensions (channel-wise) out from further flow steps
                    unsliced_channels = int(
                        max(1, 4 * current_shape[0] *
                            (1.0 - sliced_ratio[scale])))
                    sliced_channels = int(4 * current_shape[0] -
                                          unsliced_channels)
                    noise_shape = (sliced_channels, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    transforms.append(Squeeze2d())
                    transforms.append(
                        Slice(StandardNormal(noise_shape),
                              num_keep=unsliced_channels,
                              dim=1))
                    current_shape = (unsliced_channels, current_shape[1] // 2,
                                     current_shape[2] // 2)
                elif pooling == 'max':
                    noise_shape = (current_shape[0] * 3, current_shape[1] // 2,
                                   current_shape[2] // 2)
                    decoder = StandardHalfNormal(noise_shape)
                    transforms.append(
                        SimpleMaxPoolSurjection2d(decoder=decoder))
                    current_shape = (current_shape[0], current_shape[1] // 2,
                                     current_shape[2] // 2)
                else:
                    raise ValueError(
                        f"Pooling argument must be either slice, max or none, not: {pooling}"
                    )

            else:
                if actnorm:
                    transforms.append(ActNormBijection2d(current_shape[0]))

        # for reference save the shape output by the bijective flow
        self.flow_shape = current_shape
        self.latent_size = current_shape[0] * current_shape[1] * current_shape[
            2]

        super(PoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape),
                                       transforms=transforms)