Esempio n. 1
0
class LinearSplineTests(SverchokTestCase):
    def setUp(self):
        super().setUp()
        vertices = [(-1, -1, 0), (0, 0, 0), (1, 2, 0), (2, 3, 0)]
        self.spline = LinearSpline(vertices, metric="DISTANCE")

    def test_eval(self):
        t_in = np.array([0.0, 0.1, 0.4, 0.5, 0.7, 1.0])
        result = self.spline.eval(t_in)
        expected_result = np.array(
                [[-1.0,        -1.0,         0.0 ],
                 [-0.64188612, -0.64188612,  0.0 ],
                 [ 0.27350889,  0.54701779,  0.0 ],
                 [ 0.5,         1.0,         0.0 ],
                 [ 0.95298221,  1.90596443,  0.0 ],
                 [ 2.0,         3.0,         0.0 ]])
        #info(result)
        self.assert_numpy_arrays_equal(result, expected_result, precision=8)

    def test_tangent(self):
        t_in = np.array([0.0, 0.1, 0.4, 0.5, 0.7, 1.0])
        result = self.spline.tangent(t_in)
        #info(result)
        expected_result = np.array(
                [[-1, -1,  0],
                 [-1, -1,  0],
                 [-1, -2,  0],
                 [-1, -2,  0],
                 [-1, -2,  0],
                 [-1, -1,  0]])
        self.assert_numpy_arrays_equal(result, expected_result)
class LinearSplineTests(SverchokTestCase):
    def setUp(self):
        super().setUp()
        vertices = [(-1, -1, 0), (0, 0, 0), (1, 2, 0), (2, 3, 0)]
        self.spline = LinearSpline(vertices, metric="DISTANCE")

    def test_eval(self):
        t_in = np.array([0.0, 0.1, 0.4, 0.5, 0.7, 1.0])
        result = self.spline.eval(t_in)
        expected_result = np.array([[-1.0, -1.0, 0.0],
                                    [-0.64188612, -0.64188612, 0.0],
                                    [0.27350889, 0.54701779, 0.0],
                                    [0.5, 1.0, 0.0],
                                    [0.95298221, 1.90596443, 0.0],
                                    [2.0, 3.0, 0.0]])
        #info(result)
        self.assert_numpy_arrays_equal(result, expected_result, precision=8)

    def test_tangent(self):
        t_in = np.array([0.0, 0.1, 0.4, 0.5, 0.7, 1.0])
        result = self.spline.tangent(t_in)
        #info(result)
        expected_result = np.array([[-1, -1, 0], [-1, -1, 0], [-1, -2, 0],
                                    [-1, -2, 0], [-1, -2, 0], [-1, -1, 0]])
        self.assert_numpy_arrays_equal(result, expected_result)
Esempio n. 3
0
 def build_spline(self, path, mode, is_cyclic, metric=None):
     if metric is None:
         metric = self.metric
     if mode == 'LIN':
         spline = LinearSpline(path, metric = metric, is_cyclic = is_cyclic)
     else:  # SPL
         spline = CubicSpline(path, metric = metric, is_cyclic = is_cyclic)
     return spline
Esempio n. 4
0
 def _make_spline(self, mode, tknots):
     zeros = np.zeros(len(tknots))
     control_points = np.vstack((self._length_params, tknots, zeros)).T
     if mode == 'LIN':
         spline = LinearSpline(control_points, tknots = self._length_params, is_cyclic = False)
     elif mode == 'SPL':
         spline = CubicSpline(control_points, tknots = self._length_params, is_cyclic = False)
     else:
         raise Exception("Unsupported mode; supported are LIN and SPL.")
     return spline
 def build_spline(self, path):
     if self.mode == 'LIN':
         spline = LinearSpline(path,
                               metric=self.metric,
                               is_cyclic=self.is_cyclic)
     else:  # SPL
         spline = CubicSpline(path,
                              metric=self.metric,
                              is_cyclic=self.is_cyclic)
     return spline
    def process(self):

        if not any((s.is_linked for s in self.outputs)):
            return

        calc_tanget = self.outputs['Tanget'].is_linked or self.outputs['Unit Tanget'].is_linked
        norm_tanget = self.outputs['Unit Tanget'].is_linked

        h = self.h

        if self.inputs['Vertices'].is_linked:
            verts = self.inputs['Vertices'].sv_get()
            verts = dataCorrect(verts)
            t_ins = self.inputs['Interval'].sv_get()

            if self.infer_from_integer_input:
                t_ins = [make_range(int(value)) for value in t_ins[0]]

                if len(t_ins) > len(verts):
                    new_verts = verts[:]
                    for i in range(len(t_ins) - len(verts)):
                        new_verts.append(verts[-1])
                    verts = new_verts

            verts_out = []
            tanget_out = []
            norm_tanget_out = []
            for v, t_in in zip(verts, repeat_last(t_ins)):

                t_corr = np.array(t_in).clip(0, 1)

                if self.mode == 'LIN':
                    spline = LinearSpline(v, metric = self.knot_mode, is_cyclic = self.is_cyclic)
                    out = spline.eval(t_corr)
                    verts_out.append(out.tolist())

                    if calc_tanget:
                        tanget_out.append(spline.tangent(t_corr).tolist())

                else:  # SPL
                    spline = CubicSpline(v, metric = self.knot_mode, is_cyclic = self.is_cyclic)
                    out = spline.eval(t_corr)
                    verts_out.append(out.tolist())
                    if calc_tanget:
                        tangent = spline.tangent(t_corr, h)
                        if norm_tanget:
                            norm = np.linalg.norm(tangent, axis=1)
                            norm_tanget_out.append((tangent / norm[:, np.newaxis]).tolist())
                        tanget_out.append(tangent.tolist())

            outputs = self.outputs
            if outputs['Vertices'].is_linked:
                outputs['Vertices'].sv_set(verts_out)
            if outputs['Tanget'].is_linked:
                outputs['Tanget'].sv_set(tanget_out)
            if outputs['Unit Tanget'].is_linked:
                outputs['Unit Tanget'].sv_set(norm_tanget_out)
Esempio n. 7
0
 def interpolate(self, verts, n, is_cyclic):
     if len(verts) < 3:
         edges = [[i,i+1] for i in range(len(verts)-1)]
         return verts, edges
     if self.spline_mode == 'SPL':
         spline = CubicSpline(verts, metric='DISTANCE', is_cyclic = is_cyclic)
     else:
         spline = LinearSpline(verts, metric='DISTANCE', is_cyclic = is_cyclic)
     ts = numpy.linspace(0, 1, n)
     verts = [tuple(v) for v in spline.eval(ts).tolist()]
     edges = [[i,i+1] for i in range(len(verts)-1)]
     return verts, edges
Esempio n. 8
0
    def make_taper_spline(self, vertices):
        if len(vertices) == 0:
            # if no taper object provided: use constant scale of 1.0
            def make_unit(z):
                u = Vector((0,0,0))
                u[self.orient_axis_idx] = z
                u[(self.orient_axis_idx+1) % 3] = 1
                return u
            vertices = [make_unit(0), make_unit(1)]
            return LinearSpline(vertices, metric = self.metric, is_cyclic = False)

        return self.build_spline(vertices, self.taper_mode, False)
    def make_spline(self, control_points):
        xs = [p[0] for p in control_points]
        min_x = xs[0]
        max_x = xs[-1]
        control_points = np.array(control_points)
        xs = np.array(xs)

        if self.mode == 'SPL':
            spline = CubicSpline(control_points, tknots=xs, is_cyclic=False)
        else:
            spline = LinearSpline(control_points, tknots=xs, is_cyclic=False)
        return spline
Esempio n. 10
0
 def make_twist_spline(self, data):
     if data is None or len(data) == 0:
         # if no twist object provided, use constant twist of 0.0
         vertices = [Vector((0,0,0)), Vector((0,0,1))]
         return LinearSpline(vertices, metric = self.metric, is_cyclic = self.is_cyclic)
     
     elif type(data[0]) in (list, tuple) and len(data[0]) == 2:
         vertices = [Vector((twist, 0, t)) for t, twist in data]
         return self.build_spline(vertices, self.twist_mode, is_cyclic=self.is_cyclic, metric = self.metric)
     
     else:
         n = len(data)
         ts = [i / (n-1) for i in range(n)]
         vertices = [Vector((twist, 0, t)) for t, twist in zip(ts, data)]
         return self.build_spline(vertices, self.twist_mode, is_cyclic=self.is_cyclic, metric = self.metric)
Esempio n. 11
0
    def process_data(self, params):
        verts, t_ins = params

        calc_tanget = self.outputs['Tanget'].is_linked or self.outputs[
            'Unit Tanget'].is_linked
        norm_tanget = self.outputs['Unit Tanget'].is_linked
        h = self.h
        verts_out, tanget_out, norm_tanget_out = [], [], []
        for v, t_in in zip(verts, t_ins):
            if self.infer_from_integer_input:
                t_corr = make_range(int(t_in), self.end_point)
            else:
                t_corr = np.array(t_in).clip(0, 1)

            if self.mode == 'LIN':
                spline = LinearSpline(v,
                                      metric=self.knot_mode,
                                      is_cyclic=self.is_cyclic)
                out = spline.eval(t_corr)
                verts_out.append(out if self.output_numpy else out.tolist())

                if calc_tanget:
                    tanget_out.append(
                        spline.tangent(t_corr) if self.
                        output_numpy else spline.tangent(t_corr).tolist())

            else:  # SPL
                spline = CubicSpline(v,
                                     metric=self.knot_mode,
                                     is_cyclic=self.is_cyclic)
                out = spline.eval(t_corr)
                verts_out.append(out if self.output_numpy else out.tolist())
                if calc_tanget:
                    tangent = spline.tangent(t_corr, h)
                    if norm_tanget:
                        norm = np.linalg.norm(tangent, axis=1)
                        tangent_norm = tangent / norm[:, np.newaxis]
                        norm_tanget_out.append(
                            tangent_norm if self.
                            output_numpy else tangent_norm.tolist())
                    tanget_out.append(
                        tangent if self.output_numpy else tangent.tolist())

        return verts_out, tanget_out, norm_tanget_out
Esempio n. 12
0
    def process(self):
        if not any(o.is_linked for o in self.outputs):
            return

        vertices_s = self.inputs['Vertices'].sv_get(default=[[]])

        out_curves = []
        for vertices in vertices_s:
            if self.concat:
                spline = LinearSpline(vertices,
                                      metric=self.metric,
                                      is_cyclic=self.is_cyclic)
                curve = SvSplineCurve(spline)
                out_curves.append(curve)
            else:
                curves = self.make_edges(vertices, is_cyclic=self.is_cyclic)
                out_curves.append(curves)

        self.outputs['Curve'].sv_set(out_curves)
Esempio n. 13
0
    def process(self):
        if 'Unit Tanget' not in self.outputs:
            return
        if not any((s.is_linked for s in self.outputs)):
            return

        calc_tanget = self.outputs['Tanget'].is_linked or self.outputs['Unit Tanget'].is_linked

        norm_tanget = self.outputs['Unit Tanget'].is_linked

        h = self.h

        if self.inputs['Vertices'].is_linked:
            verts = self.inputs['Vertices'].sv_get()
            verts = dataCorrect(verts)
            t_ins = self.inputs['Interval'].sv_get()
            verts_out = []
            tanget_out = []
            norm_tanget_out = []
            for v, t_in in zip(verts, repeat_last(t_ins)):

                t_corr = np.array(t_in).clip(0, 1)

                if self.mode == 'LIN':
                    spline = LinearSpline(v, metric = self.knot_mode, is_cyclic = self.is_cyclic)
                    out = spline.eval(t_corr)
                    verts_out.append(out.tolist())

                    if calc_tanget:
                        tanget_out.append(spline.tangent(t_corr).tolist())

                else:  # SPL
                    spline = CubicSpline(v, metric = self.knot_mode, is_cyclic = self.is_cyclic)
                    out = spline.eval(t_corr)
                    verts_out.append(out.tolist())
                    if calc_tanget:
                        tangent = spline.tangent(t_corr, h)
                        if norm_tanget:
                            norm = np.linalg.norm(tangent, axis=1)
                            norm_tanget_out.append((tangent / norm[:, np.newaxis]).tolist())
                        tanget_out.append(tangent.tolist())

            outputs = self.outputs
            if outputs['Vertices'].is_linked:
                outputs['Vertices'].sv_set(verts_out)
            if outputs['Tanget'].is_linked:
                outputs['Tanget'].sv_set(tanget_out)
            if outputs['Unit Tanget'].is_linked:
                outputs['Unit Tanget'].sv_set(norm_tanget_out)
Esempio n. 14
0
    def make_curve(self, control_points):
        curves = []
        for series in control_points:
            xs = [p.x for p in series]
            min_x = xs[0]
            max_x = xs[-1]
            series = np.array([p.to_tuple() for p in series])
            xs = np.array(xs)

            if self.mode == 'SPL':
                spline = CubicSpline(series, tknots=xs, is_cyclic=False)
            else:
                spline = LinearSpline(series, tknots=xs, is_cyclic=False)
            curve = SvSplineCurve(spline)
            curve.u_bounds = (series[0][0], series[-1][0])
            curves.append(curve)

        if len(curves) == 1:
            return curves[0]
        else:
            return SvConcatCurve(curves)
Esempio n. 15
0
 def build_spline(self, path):
     spline = LinearSpline(path,
                           metric=self.metric,
                           is_cyclic=self.is_cyclic)
     return spline
Esempio n. 16
0
 def setUp(self):
     super().setUp()
     vertices = [(-1, -1, 0), (0, 0, 0), (1, 2, 0), (2, 3, 0)]
     self.spline = LinearSpline(vertices, metric="DISTANCE")
Esempio n. 17
0
 def make(vertices):
     spline = LinearSpline(vertices,
                           metric='DISTANCE',
                           is_cyclic=self.is_cyclic)
     return SvSplineCurve(spline)
Esempio n. 18
0
 def setUp(self):
     super().setUp()
     vertices = [(-1, -1, 0), (0, 0, 0), (1, 2, 0), (2, 3, 0)]
     self.spline = LinearSpline(vertices, metric="DISTANCE")
Esempio n. 19
0
 def setUp(self):
     super().setUp()
     vertices = [(-1, -1, 0), (0, 0, 0), (1, 2, 0), (2, 3, 0)]
     self.control_points = np.array(vertices)
     self.spline = LinearSpline(vertices, metric="DISTANCE")