Esempio n. 1
0
def evaluate():
    """Eval CIFAR-10 for a number of steps."""
    with tf.Graph().as_default() as g:
        # Get images and labels for CIFAR-10.
        eval_data = FLAGS.eval_data == 'test'
        images, labels = svhn.inputs(eval_data=eval_data)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = svhn.inference(images)

        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(logits, labels, 1)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            svhn.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

        while True:
            eval_once(saver, summary_writer, top_k_op, summary_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
Esempio n. 2
0
def evaluate():
    """Eval CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        # Get images and labels for CIFAR-10.
        images, labels = inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = svhn.inference(images)

        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(logits, labels, 1)
        top_k_predict_op = tf.argmax(logits, 1)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(svhn.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        graph_def = tf.get_default_graph().as_graph_def()
        summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, graph_def=graph_def)

        while True:
            eval_once(saver, summary_writer, top_k_op, top_k_predict_op, summary_op, images)
            break
def tower_loss(scope):
    """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = svhn.distorted_inputs()

    # Build inference Graph.
    logits = svhn.inference(images)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = svhn.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % svhn.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
Esempio n. 4
0
def evaluate():
    """Eval CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        # Get images and labels for CIFAR-10.
        images, labels = inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = svhn.inference(images)

        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(logits, labels, 1)
        top_k_predict_op = tf.argmax(logits, 1)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            svhn.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        graph_def = tf.get_default_graph().as_graph_def()
        summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
                                                graph_def=graph_def)

        while True:
            eval_once(saver, summary_writer, top_k_op, top_k_predict_op,
                      summary_op, images)
            break
Esempio n. 5
0
def train():
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)

        # Get images and labels for CIFAR-10.
        images, labels = svhn.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = svhn.inference(images)

        # Calculate loss.
        loss = svhn.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = svhn.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, graph_def=sess.graph_def)
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), "Model diverged with loss = NaN"

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = "%s: step %d, loss = %.2f (%.1f examples/sec; %.3f " "sec/batch)"
                print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch))

            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, "model.ckpt")
                saver.save(sess, checkpoint_path, global_step=step)
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.contrib.framework.get_or_create_global_step()

        # Force input pipeline to CPU:0 to avoid operations sometimes ending up on
        # GPU and resulting in a slow down.
        with tf.device('/cpu:0'):
            images, labels = svhn.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = svhn.inference(images)

        # Calculate loss.
        loss = svhn.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = svhn.train(loss, global_step)

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1
                self._start_time = time.time()

            def before_run(self, run_context):
                self._step += 1
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                if self._step % FLAGS.log_frequency == 0:
                    current_time = time.time()
                    duration = current_time - self._start_time
                    self._start_time = current_time

                    loss_value = run_values.results
                    examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
                    sec_per_batch = float(duration / FLAGS.log_frequency)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str % (datetime.now(), self._step, loss_value,
                                        examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
def train():
    """Train SVHN for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)
        # Get images and labels for SVHN with mat file
        images, labels = svhn.distorted_inputs()
        # Build a Graph that computes the logits predictions from
        # inference model.
        logits = svhn.inference(images)

        # Calculate loss.
        loss = svhn.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples
        # and updates the model parm
        train_op = svhn.train(loss, global_step)

        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())

        # Build an initialization operation to run.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)

        # summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)

        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time

            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)
                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                    'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))

            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
Esempio n. 8
0
def train_with_noise_ce(train_data, train_labels, ckpt_path):
    tf.reset_default_graph()
    with tf.Graph().as_default() as g:
        train_data_shape = train_data.shape
        # train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, train_data_shape], name='train_data_node')
        train_data_node = tf.placeholder(dtype=tf.float32,
                                         shape=[
                                             None, train_data_shape[1],
                                             train_data_shape[2],
                                             train_data_shape[3]
                                         ],
                                         name='train_data_node')
        train_labels_node = tf.placeholder(dtype=tf.float32,
                                           shape=[None, 10],
                                           name='test_labels_node')

        print('placeholder done')
        # logits = fc.inference(train_data_node)
        # loss = fc.loss_fun(logits, train_labels_node)
        if FLAGS.dataset == 'mnist':
            logits = mlenet.inference(train_data_node)
            loss = mlenet.loss_fun(logits, train_labels_node)
        elif FLAGS.dataset == 'svhn':
            logits = svhn.inference(train_data_node)
            loss = svhn.loss_fun(logits, train_labels_node)
        # print(loss.get_shape())
        op = tf.train.AdamOptimizer(learning_rate=5e-4,
                                    beta1=0.9,
                                    beta2=0.999,
                                    name="student_op").minimize(loss)
        saver = tf.train.Saver(tf.global_variables())
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
        data_length = len(train_data)
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            batch_indices = utils.random_batch_indices(data_length,
                                                       FLAGS.batch_size)

            feed_dict = {
                train_data_node: train_data[batch_indices],
                train_labels_node: train_labels[batch_indices]
            }
            _, loss_value = sess.run([op, loss], feed_dict=feed_dict)

            duration = time.time() - start_time

            if step % 100 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)

                format_str = (
                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)'
                )

                print(format_str % (datetime.now(), step, np.mean(loss_value),
                                    examples_per_sec, sec_per_batch))

            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                saver.save(sess, ckpt_path, global_step=step)
    return True
Esempio n. 9
0
def softmax_preds(images, ckpt_path, return_logits=False):
    """
  Compute softmax activations (probabilities) with the model saved in the path
  specified as an argument
  :param images: a np array of images
  :param ckpt_path: a TF model checkpoint
  :param logits: if set to True, return logits instead of probabilities
  :return: probabilities (or logits if logits is set to True)
  """
    # Compute nb samples and deduce nb of batches
    data_length = len(images)
    nb_batches = math.ceil(len(images) / FLAGS.batch_size)

    # Declare data placeholder
    #   train_data_node = tf.placeholder(dtype=tf.float32, shape=[None, images.shape[-1]])
    train_data_node = tf.placeholder(
        dtype=tf.float32,
        shape=[None, images.shape[1], images.shape[2], images.shape[3]])

    # Build a Graph that computes the logits predictions from the placeholder
    #   logits = fc.inference(train_data_node)
    if FLAGS.dataset == 'mnist':
        logits = mlenet.inference(train_data_node)
    elif FLAGS.dataset == 'svhn':
        logits = svhn.inference(train_data_node)
        # logits = inference2(train_data_node)

    if return_logits:
        # We are returning the logits directly (no need to apply softmax)
        output = logits
    else:
        # Add softmax predictions to graph: will return probabilities
        output = tf.nn.softmax(logits)

    # Restore the moving average version of the learned variables for eval.
    # variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
    # variables_to_restore = variable_averages.variables_to_restore()
    # saver = tf.train.Saver(variables_to_restore)
    saver = tf.train.Saver()

    # Will hold the result
    preds = np.zeros((data_length, 10), dtype=np.float32)

    # Create TF session
    with tf.Session() as sess:
        # Restore TF session from checkpoint file
        saver.restore(sess, ckpt_path)

        # Parse data by batch
        for batch_nb in xrange(0, int(nb_batches + 1)):
            # Compute batch start and end indices
            start, end = utils.batch_indices(batch_nb, data_length,
                                             FLAGS.batch_size)

            # Prepare feed dictionary
            feed_dict = {train_data_node: images[start:end]}

            # Run session ([0] because run returns a batch with len 1st dim == 1)
            preds[start:end, :] = sess.run([output], feed_dict=feed_dict)[0]

    # Reset graph to allow multiple calls
    tf.reset_default_graph()

    return preds