Esempio n. 1
0
def testRbf(k1=1.3):
    dataArr, labelArr = svm.loadDataSet('testSetRBF.txt')
    b, alphas = PlattSMO(dataArr, labelArr, 200, 0.0001, 10000,
                         ('rbf', k1))  # C=200 important
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]  # 取非零alphas值的索引,构建支持向量的矩阵
    sVs = datMat[svInd]  # get matrix of only support vectors
    labelSV = labelMat[svInd]
    print "there are %d Support Vectors" % shape(sVs)[0]
    m, n = shape(datMat)
    errorCount = 0
    '''
    w = Sigma(alpha_i * y_i * phi(x_i)),<Sigma为求和>
    g_svm(x)=sign(w.T*phi(x)+b)=sign(Sigma(alpha_i*y_i*phi(x_i)*phi(x))+b)=sign(Sigma(alpha_i*y_i*kernel(x_i,x))+b)
    <kernel()为核函数,phi()为高维空间的映射函数,alpha_i>0,对应的x_i为支持向量>
    '''
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount) / m)
    dataArr, labelArr = svm.loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat = mat(dataArr)
    labelMat = mat(labelArr).transpose()
    m, n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]): errorCount += 1
    print "the test error rate is: %f" % (float(errorCount) / m)
Esempio n. 2
0
import svm
from numpy import *

dataMat,labelMat=svm.loadDataSet('testSet.txt')

#print(labelMat)

b,alphas=svm.smoSimple(dataMat,labelMat,0.6,0.001,40)

print(b)
Esempio n. 3
0
#coding:utf-8

import svm

dataArr, labelArr = svm.loadDataSet('testSet.txt')

#print labelArr

b, alphas = svm.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)

print b
print alphas[alphas > 0]
Esempio n. 4
0
# -*- coding: utf-8 -*-
"""
Created on Wed Sep  5 15:22:26 2018

@author: weixw
"""

import svm as sm

#通过训练数据计算 b, alphas
dataArr, labelArr = sm.loadDataSet('train.txt')
b, alphas = sm.smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', 0.10))
sm.drawDataMap(dataArr, labelArr, b, alphas)
sm.getTrainingDataResult(dataArr, labelArr, b, alphas, 0.10)
dataArr1, labelArr1 = sm.loadDataSet('test.txt')
#测试结果
sm.getTestDataResult(dataArr1, labelArr1, b, alphas, 0.10)
Esempio n. 5
0
#!usr/bin/env python3
# -*- coding:utf-8 -*-
"""
#@author:Benny.Chen
#@file: main.py
#@time: 2020/6/5 11:50
#@email:[email protected]
"""
import svm

if __name__ == '__main__':
    dataArr,labelArr = svm.loadDataSet("testSet.txt")
    b,alphas = svm.smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
Esempio n. 6
0
import svm

from numpy import *

dataArr, labelArr = svm.loadDataSet("machinelearninginaction/Ch06/testSet.txt")
print(labelArr)
print(dataArr)
Esempio n. 7
0
def testRbf(k1=1.3):
	dataArr, labelArr = svm.loadDataSet('dataset.txt')
	alphas, b = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1))