import numpy as np import svm # Size of vocabulary voca = 0 with open("../data/vocabularyNN.txt",'r') as f: for line in f: voca += 1 # Load training data and label data = np.loadtxt("../data/dataNN.txt", delimiter=' ', dtype=int) label = np.loadtxt("../data/labelNN.txt", delimiter=' ', dtype=int) folds = 11 predictAccCV = [] for k in range(2,folds+1): predictAcc = svm.svmCV(voca, data, label, k) predictAccCV.append(predictAcc) print predictAcc accuracy = np.array(predictAccCV) np.save('accNNsvm.npy', accuracy)
import numpy as np import svm # Size of vocabulary voca = 0 with open("../data/vocabulary.txt", 'r') as f: for line in f: voca += 1 # Load training data and label data = np.loadtxt("../data/data.txt", delimiter=' ', dtype=int) label = np.loadtxt("../data/label.txt", delimiter=' ', dtype=int) folds = 2 predictAccCV = [] for k in range(2, folds + 1): predictAcc = svm.svmCV(voca, data, label, k) predictAccCV.append(predictAcc) print predictAcc accuracy = np.array(predictAccCV) np.save('accAllsvm.npy', accuracy)
import numpy as np import svm filetype = 'Adj' # filetype = 'NN' # filetype = 'AllWords' groups = 5 folds = 2 C = [1,10,100,1000] kernel = ['linear','poly','rbf'] predictAccCV = np.zeros([4,3,folds]) for i,cp in enumerate(C): for j,ke in enumerate(kernel): print 'C:',cp print 'kernel:',ke predictAccCV[i,j] = svm.svmCV(folds, filetype, groups, cp, ke) print 'predictAccCV:',predictAccCV np.save('accSVM'+filetype+'.npy', predictAccCV)