Esempio n. 1
0
    def solve(self, T = None, tol = None, nl_tol = 1e-5):

        def time_finish(t):
            if T:
                if t >= T:
                    return True
            return False

        def converged(du):
            if tol:
                if du < tol:
                    return True
            return False

        tic()

        delta = 1e10
        while not (time_finish(self.t) or converged(delta)):
            
            # ADAPTIVE TIMESTEP
            if self.adapt_timestep and (self.t > 0.0 or self.adapt_initial_timestep):
                solve(self.a_k == self.L_k, self.k)
                self.timestep = self.k.vector().array()[0]
            
            # SOLVE COUPLED EQUATIONS
            # solve(self.F == 0, self.w[0], bcs=self.bc, solver_parameters=solver_parameters)

            solve(self.F == 0, self.w[0], bcs=self.bc, J=self.J, solver_parameters=solver_parameters)
            
            if tol:
                delta = 0.0
                f_list = [[self.w[0].split()[i], self.w[1].split()[i]] for i in range(len(self.w[0].split()))]
                for f_0, f_1 in f_list:
                    delta = max(errornorm(f_0, f_1, norm_type="L2", degree_rise=1)/self.timestep, delta)

            self.w[1].assign(self.w[0])

            self.t += self.timestep

            # display results
            if self.plot:
                if self.t > self.plot_t:
                    self.plotter.update_plot(self)
                    self.plot_t += self.plot

            # save data
            if self.write:
                if self.t > self.write_t:
                    sw_io.write_model_to_files(self, 'a', file=self.save_loc)
                    self.write_t += self.write

            # write timestep info
            sw_io.print_timestep_info(self, delta)

        print "\n* * * Initial forward run finished: time taken = {}".format(toc())
        list_timings(True)

        if self.plot:
            self.plotter.clean_up()
Esempio n. 2
0
    def solve(self, T = None, tol = None, nl_tol = 1e-5):

        def time_finish(t):
            if T:
                if t >= T:
                    return True
            return False

        def converged(du):
            if tol:
                if du < tol:
                    return True
            return False

        tic()

        delta = 1e10
        while not (time_finish(self.t) or converged(delta)):
            
            # ADAPTIVE TIMESTEP
            if self.adapt_timestep and (self.t > 0.0 or self.adapt_initial_timestep):
                solve(self.a_k == self.L_k, self.k)
                self.timestep = self.k.vector().array()[0]

            # M = assemble(self.J)
            # U, s, Vh = scipy.linalg.svd(M.array())
            # cond = s.max()/s.min()
            # print cond, s.min(), s.max()
            
            # SOLVE COUPLED EQUATIONS
            if self.time_discretise.im_func == runge_kutta:
                # store previous solution
                self.w[2].assign(self.w[1])

                # runge kutta timestep
                solve(self.F == 0, self.w[0], bcs=self.bc, J=self.J, solver_parameters=solver_parameters)
                if self.slope_limiter:
                    self.slope_limit()

                # # 2nd order
                # self.w[1].assign(self.w[0])
                # solve(self.F_RK == 0, self.w[0], bcs=self.bc, J=self.J_RK, 
                #       solver_parameters=solver_parameters)

                # 3rd order
                self.w[1].assign(self.w[0])
                solve(self.F_RK1 == 0, self.w[0], bcs=self.bc, J=self.J_RK1, 
                      solver_parameters=solver_parameters)
                if self.slope_limiter:
                    self.slope_limit()
                
                self.w[1].assign(self.w[0])
                solve(self.F_RK2 == 0, self.w[0], bcs=self.bc, J=self.J_RK2, 
                      solver_parameters=solver_parameters)

                # replace previous solution
                self.w[1].assign(self.w[2])
            else:
                solve(self.F == 0, self.w[0], bcs=self.bc, J=self.J, solver_parameters=solver_parameters)
                
            if self.slope_limiter:
                self.slope_limit()
                            
            if tol:
                delta = 0.0
                f_list = [[self.w[0].split()[i], self.w[1].split()[i]] for i in range(len(self.w[0].split()))]
                for f_0, f_1 in f_list:
                    delta = max(errornorm(f_0, f_1, norm_type="L2", degree_rise=1)/self.timestep, delta)

            self.w[1].assign(self.w[0])

            self.t += self.timestep

            # display results
            if self.plot:
                if self.t > self.plot_t:
                    self.plotter.update_plot(self)
                    self.plot_t += self.plot

            # save data
            if self.write:
                if self.t > self.write_t:
                    sw_io.write_model_to_files(self, 'a', file=self.save_loc)
                    self.write_t += self.write

            # write timestep info
            sw_io.print_timestep_info(self, delta)

        print "\n* * * Initial forward run finished: time taken = {}".format(toc())
        list_timings(True)

        if self.plot:
            self.plotter.clean_up()

        # error calc callback
        if self.error_callback:
            return self.error_callback(self)
Esempio n. 3
0
    def setup(self, h_ic = None, phi_ic = None, 
              q_a = Constant(0.0), q_pa = Constant(0.0), q_pb = Constant(1.0), 
              w_ic = None, zero_q = False, similarity = False, dam_break = False):
        # q_a between 0.0 and 1.0 
        # q_pa between 0.2 and 0.99 
        # q_pb between 1.0 and 

        # define constants
        self.Fr = Constant(self.Fr_, name="Fr")
        self.beta = Constant(self.beta_, name="beta")

        if type(w_ic) == type(None):

            # define initial conditions
            if type(h_ic) == type(None):
                h_ic = 1.0 
                h_N = 1.0  
                # h_ic = Function(self.h_FS, name='h_ic')
                # trial = TrialFunction(self.h_FS)
                # test = TestFunction(self.h_FS)
                # a = inner(test, trial)*dx
                # q_b = Constant(1.0) - q_a  
                # f = (1.0 - (q_a*cos(((self.X/self.L)**q_pa)*np.pi) + q_b*cos(((self.X/self.L)**q_pb)*np.pi)))/2.0
                # L = inner(test, f + Constant(1e-1))*dx 
                # solve(a == L, h_ic)
                # h_N = h_ic.vector().array()[-1]
            else:
                h_N = h_ic.vector().array()[-1]

            if type(phi_ic) == type(None): 
                # phi_ic = 1.0 
                # phi_N = 1.0 
                phi_ic = Function(self.phi_FS, name='phi_ic')
                trial = TrialFunction(self.phi_FS)
                test = TestFunction(self.phi_FS)
                a = inner(test, trial)*dx
                q_b = Constant(1.0) - q_a  
                f = (1.0 - (q_a*cos(((self.X/self.L)**q_pa)*np.pi) + q_b*cos(((self.X/self.L)**q_pb)*np.pi)))/2.0
                L = inner(test, f + Constant(1e-3))*dx 
                solve(a == L, phi_ic)
                phi_N = phi_ic.vector().array()[-1]
            else:
                phi_N = phi_ic.vector().array()[-1]

            # calculate u_N component
            trial = TrialFunction(self.var_N_FS)
            test = TestFunction(self.var_N_FS)
            u_N_ic = Function(self.var_N_FS, name='u_N_ic')
            a = inner(test, trial)*self.ds(1)
            L = inner(test, self.Fr*phi_ic**0.5)*self.ds(1)             
            solve(a == L, u_N_ic)

            # define q
            q_N_ic = Function(self.var_N_FS, name='q_N_ic')
            q_ic = Function(self.q_FS, name='q_ic')

            # cosine initial condition for u
            if not zero_q:
                a = inner(test, trial)*self.ds(1)
                L = inner(test, u_N_ic*h_ic)*self.ds(1)             
                solve(a == L, q_N_ic)

                trial = TrialFunction(self.q_FS)
                test = TestFunction(self.q_FS)
                a = inner(test, trial)*dx
                q_b = Constant(1.0) - q_a  
                f = (1.0 - (q_a*cos(((self.X/self.L)**q_pa)*np.pi) + q_b*cos(((self.X/self.L)**q_pb)*np.pi)))/2.0
                L = inner(test, f*q_N_ic)*dx             
                solve(a == L, q_ic)

            # create ic array
            self.w_ic = [
                q_ic, 
                h_ic, 
                phi_ic, 
                Function(self.phi_d_FS, name='phi_d_ic'), 
                self.x_N_, 
                u_N_ic
                ]
            
        else:
            # whole of w_ic defined externally
            self.w_ic = w_ic

        # define bc's
        bcphi_d = DirichletBC(self.W.sub(3), '0.0', "near(x[0], 1.0) && on_boundary")
        bcq = DirichletBC(self.W.sub(0), '0.0', "near(x[0], 0.0) && on_boundary")
        self.bc = [bcq, bcphi_d]

        self.generate_form()
        
        # initialise plotting
        if self.plot:
            self.plotter = sw_io.Plotter(self, rescale=True, file=self.save_loc, 
                                         similarity = similarity, dam_break = dam_break)
            self.plot_t = self.plot

        # write ic's
        if self.write:
            sw_io.clear_model_files(file=self.save_loc)
            sw_io.write_model_to_files(self, 'a', file=self.save_loc)
            self.write_t = self.write