Esempio n. 1
0
    def queryTerm(self, term):
        method = "queryTerm"
        attributes = self.findTermAttributesAndTypeByName(term)
        response = self.createResponse()
        if ( attributes["status"] == 'OK' ):
            node1 = Node()
            node1.id = "MESH:" + attributes["id"]
            node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"]
            node1.type = attributes["type"]
            node1.name = attributes["name"]
            node1.description = attributes["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://rtx.ncats.io/api/v1/result/0000"
            result1.text = "The term " + attributes["name"] + " refers to " + attributes["description"]
            result1.confidence = 1.0

            #### Create a ResultGraph object and put the list of nodes and edges into it
            result_graph = ResultGraph()
            result_graph.node_list = [ node1 ]

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the response
            result_list = [ result1 ]
            response.result_list = result_list

        else:
            response.response_code = "TermNotFound"
            response.message = "Unable to find term '" + term + "' in MeSH. No further information is available at this time."
            response.id = None

        return response
Esempio n. 2
0
    def queryTerm(self, term):
        method = "queryTerm"
        attributes = self.findTermAttributesAndTypeByName(term)
        message = self.createMessage()
        if ( attributes["status"] == 'OK' ):
            message.code_description = "1 result found"
            message.table_column_names = [ "id", "type", "name", "description", "uri" ]

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = "MESH:" + attributes["id"]
            node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"]
            node1.type = [ attributes["type"] ]
            node1.name = attributes["name"]
            node1.description = attributes["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://rtx.ncats.io/api/v1/result/0000"
            result1.description = "The term " + attributes["name"] + " refers to " + attributes["description"]
            result1.confidence = 1.0
            result1.essence = attributes["name"]
            result1.essence_type = attributes["type"]
            node_types = ",".join(node1.type)
            result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [ node1 ]

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [ result1 ]
            message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.node_id = "n00"
            qnode1.curie = "MESH:" + attributes["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [ qnode1 ]
            query_graph.edges = []
            message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            knowledge_map = { "n00": "MESH:" + attributes["id"] }
            result1.knowledge_map = knowledge_map

        else:
            message.message_code = "TermNotFound"
            message.code_description = "Unable to find this term in MeSH. No further information is available at this time."
            message.id = None

        return message
Esempio n. 3
0
    def answer(self, entity, use_json=False):
        """
		Answer a question of the type "What is X" but is general:
		:param entity: KG neo4j node name (eg "carbetocin")
		:param use_json: If the answer should be in Translator standardized API output format
		:return: a description and type of the node
		"""

        #### See if this entity is in the KG via the index
        eprint("Looking up '%s' in KgNodeIndex" % entity)
        kgNodeIndex = KGNodeIndex()
        curies = kgNodeIndex.get_curies(entity)

        #### If not in the KG, then return no information
        if not curies:
            if not use_json:
                return None
            else:
                error_code = "TermNotFound"
                error_message = "This concept is not in our knowledge graph"
                response = FormatOutput.FormatResponse(0)
                response.add_error_message(error_code, error_message)
                return response.message

        # Get label/kind of node the source is
        eprint("Getting properties for '%s'" % curies[0])
        properties = RU.get_node_properties(curies[0])
        eprint("Properties are:")
        eprint(properties)

        #### By default, return the results just as a plain simple list of data structures
        if not use_json:
            return properties

        #### Or, if requested, format the output as the standardized API output format
        else:
            #### Create a stub Message object
            response = FormatOutput.FormatResponse(0)
            response.message.table_column_names = [
                "id", "type", "name", "description", "uri"
            ]
            response.message.code_description = None

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = properties["id"]
            node1.uri = properties["uri"]
            node1.type = [properties["category"]]
            node1.name = properties["name"]
            node1.description = properties["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://arax.ncats.io/api/v1/result/0000"
            result1.description = "The term %s is in our knowledge graph and is defined as %s" % (
                properties["name"], properties["description"])
            result1.confidence = 1.0
            result1.essence = properties["name"]
            result1.essence_type = properties["category"]
            node_types = ",".join(node1.type)
            result1.row_data = [
                node1.id, node_types, node1.name, node1.description, node1.uri
            ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [node1]
            result_graph.edges = []

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [result1]
            response.message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            response.message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.id = "n00"
            qnode1.curie = properties["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [qnode1]
            query_graph.edges = []
            response.message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            node_binding = NodeBinding(qg_id="n00", kg_id=properties["id"])
            result1.node_bindings = [node_binding]
            result1.edge_bindings = []

            #eprint(response.message)
            return response.message
Esempio n. 4
0
    def test1(self):

        #### Create the response object and fill it with attributes about the response
        response = Response()
        response.context = "http://translator.ncats.io"
        response.id = "http://rtx.ncats.io/api/v1/response/1234"
        response.type = "medical_translator_query_response"
        response.tool_version = "RTX 0.4"
        response.schema_version = "0.5"
        response.datetime = datetime.datetime.now().strftime(
            "%Y-%m-%d %H:%M:%S")
        response.original_question_text = "what proteins are affected by sickle cell anemia"
        response.restated_question_text = "Which proteins are affected by sickle cell anemia?"
        response.result_code = "OK"
        response.message = "1 result found"

        #### Create a disease node
        node1 = Node()
        node1.id = "http://omim.org/entry/603903"
        node1.type = "disease"
        node1.name = "sickle cell anemia"
        node1.accession = "OMIM:603903"
        node1.description = "A disease characterized by chronic hemolytic anemia..."

        #### Create a protein node
        node2 = Node()
        node2.id = "https://www.uniprot.org/uniprot/P00738"
        node2.type = "protein"
        node2.name = "Haptoglobin"
        node2.symbol = "HP"
        node2.accession = "UNIPROT:P00738"
        node2.description = "Haptoglobin captures, and combines with free plasma hemoglobin..."

        #### Create a node attribute
        node2attribute1 = NodeAttribute()
        node2attribute1.type = "comment"
        node2attribute1.name = "Complex_description"
        node2attribute1.value = "The Hemoglobin/haptoglobin complex is composed of a haptoglobin dimer bound to two hemoglobin alpha-beta dimers"
        node2.node_attributes = [node2attribute1]

        #### Create an edge between these 2 nodes
        edge1 = Edge()
        edge1.type = "is_caused_by_a_defect_in"
        edge1.source_id = node1.id
        edge1.target_id = node2.id
        edge1.confidence = 1.0

        #### Add an origin and property for the edge
        origin1 = Origin()
        origin1.id = "https://api.monarchinitiative.org/api/bioentity/disease/OMIM:603903/genes/"
        origin1.type = "Monarch_BioLink_API_Relationship"

        #### Add an attribute
        attribute1 = EdgeAttribute()
        attribute1.type = "PubMed_article"
        attribute1.name = "Orthopaedic Manifestations of Sickle Cell Disease"
        attribute1.value = None
        attribute1.url = "https://www.ncbi.nlm.nih.gov/pubmed/29309293"
        origin1.attribute_list = [attribute1]
        edge1.origin_list = [origin1]

        #### Create the first result (potential answer)
        result1 = Result()
        result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345"
        result1.text = "A free text description of this result"
        result1.confidence = 0.932

        #### Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = [node1, node2]
        result_graph.edge_list = [edge1]

        #### Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        #### Put the first result (potential answer) into the response
        result_list = [result1]
        response.result_list = result_list

        print(response)