Esempio n. 1
0
class SingleCarryDropReturnSwarmEnvironmentModel(Model):
    """A environment to model swarms."""
    def __init__(self, N, width, height, grid=10, seed=None, viewer=False):
        if seed is None:
            super(SingleCarryDropReturnSwarmEnvironmentModel,
                  self).__init__(seed=None)
        else:
            super(SingleCarryDropReturnSwarmEnvironmentModel,
                  self).__init__(seed)

        self.num_agents = N

        self.grid = Grid(width, height, grid)

        self.viewer = viewer

        self.schedule = SimultaneousActivation(self)

        self.hub = Hub(id=2, location=(0, 0), radius=5)
        self.grid.add_object_to_grid(self.hub.location, self.hub)
        self.site = Sites(id=3, location=(-35, -5), radius=5)
        self.grid.add_object_to_grid(self.site.location, self.site)

        self.agents = []
        self.foods = []

        for i in range(self.num_agents):
            f = Food(i, location=(-35, -5), radius=5)
            self.grid.add_object_to_grid(f.location, f)
            self.foods.append(f)

        for i in range(self.num_agents):
            # a = SwarmAgentRandomSingleCarryDropReturn(i, self)
            a = SwarmAgentHandCodedForaging(i, self)
            self.schedule.add(a)
            x = -45
            y = -45
            a.location = (x, y)
            a.direction = -2.3561944901923448
            self.grid.add_object_to_grid((x, y), a)

            self.agents.append(a)

        if self.viewer:
            self.ui = UI((width, height), [self.hub],
                         self.agents, [self.site],
                         food=self.foods)

    def step(self):
        self.schedule.step()
        if self.viewer:
            self.ui.step()
Esempio n. 2
0
class RandomWalkSwarmEnvironmentModel(Model):
    """A environment to model swarms."""
    def __init__(self, N, width, height, grid=10, seed=None, viewer=False):
        """Initialize the environment methods."""
        if seed is None:
            super(RandomWalkSwarmEnvironmentModel, self).__init__(seed=None)
        else:
            super(RandomWalkSwarmEnvironmentModel, self).__init__(seed)

        self.num_agents = N

        self.grid = Grid(width, height, grid)

        self.viewer = viewer

        self.schedule = SimultaneousActivation(self)

        self.hub = Hub(id=2, location=(0, 0), radius=5)
        self.grid.add_object_to_grid(self.hub.location, self.hub)

        self.site = Sites(id=2, location=(25, 25), radius=5)
        self.grid.add_object_to_grid(self.site.location, self.site)

        self.agents = []
        for i in range(self.num_agents):
            a = SwarmAgentRandomWalk(i, self)
            self.schedule.add(a)
            x = 0
            y = 0
            a.location = (x, y)
            a.direction = -2.3561944901923448
            self.grid.add_object_to_grid((x, y), a)
            self.agents.append(a)

        if self.viewer:
            self.ui = UI((width, height), [self.hub], self.agents, [self.site])

    def step(self):
        """Execute."""
        self.schedule.step()
        if self.viewer:
            self.ui.step()
Esempio n. 3
0
class SimModel(Model):
    """A environemnt to model swarms."""

    def __init__(
            self, N, width, height, grid=10, iter=100000,
            xmlstrings=None, seed=None, viewer=False, pname=None,
            expname='MSFSimulation', agent='SimAgent'):
        """Initialize the attributes."""
        if seed is None:
            super(SimModel, self).__init__(seed=None)
        else:
            super(SimModel, self).__init__(seed)

        self.runid = datetime.datetime.now().strftime(
            "%s") + str(self.random.randint(1, 1000, 1)[0])

        if pname is None:
            self.pname = os.getcwd() + '/' + self.runid + expname
        else:
            self.pname = pname + '/' + self.runid + expname

        self.width = width
        self.height = height
        self.stepcnt = 1
        self.iter = iter
        self.xmlstrings = xmlstrings

        self.viewer = viewer

        # Create db connection
        connect = Connect('swarm', 'swarm', 'swarm', 'localhost')
        self.connect = connect.tns_connect()

        # Fill out the experiment table
        self.experiment = Experiment(
            self.connect, self.runid, N, seed, expname,
            iter, width, height, grid, phenotype=xmlstrings[0])

        self.experiment.insert_experiment_simulation()

        self.sn = self.experiment.sn

        # Create a folder to store results
        os.mkdir(self.pname)

        self.num_agents = N

        self.grid = Grid(width, height, grid)

        self.schedule = SimultaneousActivation(self)

        self.agents = []

        bound = np.ceil((self.num_agents * 1.0) / len(self.xmlstrings))

        j = 0
        # Create agents
        for i in range(self.num_agents):
            # print (i, j, self.xmlstrings[j])
            a = eval(agent)(i, self, xmlstring=self.xmlstrings[j])
            self.schedule.add(a)
            # Add the agent to a random grid cell
            # x = self.random.randint(
            #    -self.grid.width / 2, self.grid.width / 2)
            x = 0
            # y = self.random.randint(
            #    -self.grid.height / 2, self.grid.height / 2)
            y = 0

            a.location = (x, y)
            self.grid.add_object_to_grid((x, y), a)
            a.operation_threshold = 2  # self.num_agents // 10
            self.agents.append(a)

            if (i + 1) % bound == 0:
                j += 1

    def create_environment_object(self, jsondata, obj):
        """Create env from jsondata."""
        name = obj.__name__.lower()
        temp_list = []
        i = 0
        for json_object in jsondata[name]:
            location = (json_object["x"], json_object["y"])
            if "q_value" in json_object:
                temp_obj = obj(
                    i, location, json_object["radius"], q_value=json_object[
                        "q_value"])
            else:
                temp_obj = obj(i, location, json_object["radius"])

            self.grid.add_object_to_grid(location, temp_obj)
            temp_list.append(temp_obj)
            i += 1
        return temp_list

    def build_environment_from_json(self):
        """Build env from jsondata."""
        jsondata = JsonData.load_json_file(filename)
        # Create a instance of JsonData to store object that
        # needs to be sent to UI
        self.render = JsonData()
        self.render.objects = {}

        for name in jsondata.keys():
            obj = eval(name.capitalize())
            self.render.objects[name] = self.create_environment_object(
                jsondata, obj)

        self.hub = self.render.objects['hub'][0]
        try:
            self.foods = []
            for site in self.render.objects['sites']:
                self.site = site  # self.render.objects['sites'][0]

                for i in range(self.num_agents):
                    f = Food(
                        i, location=self.site.location,
                        radius=self.site.radius)
                    f.agent_name = None
                    self.grid.add_object_to_grid(f.location, f)
                    self.foods.append(f)
        except KeyError:
            pass

        if self.viewer:
            self.ui = UI(
                (self.width, self.height), [self.hub], self.agents,
                [self.site], food=self.foods)

    def step(self):
        """Step through the environment."""
        # Gather info from all the agents
        # self.gather_info()
        # Next step
        self.schedule.step()
        # Increment the step count
        self.stepcnt += 1
        if self.viewer:
            self.ui.step()

    def find_higest_performer(self):
        """Find the best agent."""
        fitness = self.agents[0].individual[0].fitness
        fittest = self.agents[0]
        for agent in self.agents:
            if agent.individual[0].fitness > fitness:
                fittest = agent
        return fittest

    def find_higest_food_collector(self):
        """Find the best agent to collect food."""
        fitness = self.agents[0].food_collected
        fittest = self.agents[0]
        for agent in self.agents:
            if agent.food_collected > fitness:
                fittest = agent
        return fittest

    def detect_food_moved(self):
        """Detect food moved."""
        grid = self.grid
        food_loc = self.site.location
        neighbours = grid.get_neighborhood(food_loc, 10)
        food_objects = grid.get_objects_from_list_of_grid('Food', neighbours)

        # print (food_objects)
        return food_objects

    def food_in_hub(self):
        """Find amount of food in hub."""
        grid = self.grid
        food_loc = self.hub.location
        neighbours = grid.get_neighborhood(food_loc, 10)
        food_objects = grid.get_objects_from_list_of_grid('Food', neighbours)
        return len(food_objects)

    def food_in_loc(self, loc):
        """Find amount of food in hub."""
        grid = self.grid
        neighbours = grid.get_neighborhood(loc, 10)
        food_objects = grid.get_objects_from_list_of_grid('Food', neighbours)
        return food_objects
Esempio n. 4
0
class ViewerModel(ForagingModel):
    """A environemnt to test swarm behavior performance."""
    def __init__(self,
                 N,
                 width,
                 height,
                 grid=10,
                 iter=100000,
                 seed=None,
                 name="TestSForge",
                 viewer=True):
        """Initialize the attributes."""
        super(ViewerModel, self).__init__(N, width, height, grid, iter, seed,
                                          name, viewer)

    def create_agents(self, random_init=False, phenotypes=None):
        """Initialize agents in the environment."""
        # Variable to tell how many agents will have the same phenotype
        bound = np.ceil((self.num_agents * 1.0) / len(phenotypes))
        j = 0
        # Create agents
        for i in range(self.num_agents):
            # print (i, j, self.xmlstrings[j])
            a = ExecutingAgent(i, self, xmlstring=phenotypes[j])
            self.schedule.add(a)
            # Add the hub to agents memory
            a.shared_content['Hub'] = {self.hub}
            # Initialize the BT. Since the agents are normal agents just
            # use the phenotype
            a.construct_bt()
            if random_init:
                # Add the agent to a random grid cell
                x = self.random.randint(-self.grid.width / 2,
                                        self.grid.width / 2)
                y = self.random.randint(-self.grid.height / 2,
                                        self.grid.height / 2)
            else:
                try:
                    x, y = self.hub.location
                except AttributeError:
                    x, y = 0, 0

            a.location = (x, y)
            self.grid.add_object_to_grid((x, y), a)
            a.operation_threshold = 2  # self.num_agents // 10
            self.agents.append(a)

            if (i + 1) % bound == 0:
                j += 1

        if self.viewer:
            self.ui = UI((100, 100), [self.hub],
                         self.agents,
                         self.site,
                         food=self.foods)

    def step(self):
        """Step through the environment."""
        # Next step
        self.schedule.step()

        # Increment the step count
        self.stepcnt += 1

        # If viewer required do take a step in UI
        if self.viewer:
            self.ui.step()