def __init__(self, encryption_param): n = encryption_param.poly_modulus q = encryption_param.coeff_modulus t = encryption_param.plain_modulus self._coeff_count = n self.base_q = RNSBase(q) self.base_q_size = len(q) self._t = t self._base_t_gamma = RNSBase([t, gamma]) self._base_t_gamma_size = 2 self.prod_t_gamma_mod_q = [(t * gamma) % q for q in self.base_q.base] self._inv_gamma_mod_t = invert_mod(gamma, self._t) # Compute -prod(q)^(-1) mod {t, gamma} self.neg_inv_q_mod_t_gamma = [0] * self._base_t_gamma_size for i in range(self._base_t_gamma_size): self.neg_inv_q_mod_t_gamma[i] = self.base_q.base_prod % self._base_t_gamma.base[i] self.neg_inv_q_mod_t_gamma[i] = invert_mod( self.neg_inv_q_mod_t_gamma[i], self._base_t_gamma.base[i] ) self.neg_inv_q_mod_t_gamma[i] = negate_mod( self.neg_inv_q_mod_t_gamma[i], self._base_t_gamma.base[i] )
def test_fast_convert_list(ibase, obase, input, output): base_converter = BaseConvertor(RNSBase(ibase), RNSBase(obase)) result = base_converter.fast_convert_list(input, 3) for i in range(len(result)): for j in range(len(result[0])): assert result[i][j] == output[i][j]
def initialize(self): base_q_size = len(self.q) # In some cases we might need to increase the size of the base B by one, namely we require # K*n*t*q^2<q*prod(B)*m_sk, where K takes into account cross terms when larger size # ciphertexts are used, and n is the "delta factor" for the ring. We reserve 32 bits # for K * n. Here the coeff modulus primes q_i are bounded to be # SEAL_USER_MOD_BIT_COUNT_MAX (60) bits, and all primes in B and m_sk are # SEAL_INTERNAL_MOD_BIT_COUNT (61) bits. total_coeff_bit_count = RNSBase(self.q).base_prod.bit_length() base_B_size = base_q_size if 32 + self.t.bit_length() + total_coeff_bit_count >= 61 * len( self.q) + 61: base_B_size += 1 # Sample primes for B and two more primes: m_sk and gamma. baseconv_primes = get_primes(self.coeff_count, 50, base_B_size + 2) self.m_sk = baseconv_primes[0] self.gamma = baseconv_primes[1] base_B_primes = baseconv_primes[2:] self.prod_t_gamma_mod_q = [(self.t * self.gamma) % q for q in self.q] self.inv_gamma_mod_t = invert_mod(self.gamma, self.t) # Set m_tilde_ to a non-prime value self.m_tilde = 1 << 32 # Populate the base arrays self.base_q = RNSBase(self.q) self.base_B = RNSBase(base_B_primes) self.base_Bsk = RNSBase(base_B_primes + [self.m_sk]) self.base_Bsk_m_tilde = RNSBase(base_B_primes + [self.m_sk] + [self.m_tilde]) if self.t != 0: self.base_t_gamma_size = 2 self.base_t_gamma = RNSBase([self.t, self.gamma]) # Set up BaseConvTool for q --> Bsk self.base_q_to_Bsk_conv = BaseConvertor(self.base_q, self.base_Bsk) # Set up BaseConvTool for q --> {m_tilde} self.base_q_to_m_tilde_conv = BaseConvertor(self.base_q, RNSBase([self.m_tilde])) # Set up BaseConvTool for B --> q self.base_B_to_q_conv = BaseConvertor(self.base_B, self.base_q) # Set up BaseConvTool for B --> {m_sk} self.base_B_to_m_sk_conv = BaseConvertor(self.base_B, RNSBase([self.m_sk])) if self.t != 0: # Base conversion: convert from q to {t, gamma} self.base_q_to_t_gamma_conv = BaseConvertor( self.base_q, self.base_t_gamma) # Compute prod(q)^(-1) mod m_tilde inv_prod_q_mod_m_tilde = self.base_q.base_prod % self.m_tilde self.inv_prod_q_mod_m_tilde = invert_mod(inv_prod_q_mod_m_tilde, self.m_tilde) # Compute m_tilde^(-1) mod Bsk self.inv_m_tilde_mod_Bsk = [0] * self.base_Bsk.size for i in range(self.base_Bsk.size): self.inv_m_tilde_mod_Bsk[i] = invert_mod( self.m_tilde % self.base_Bsk.base[i], self.base_Bsk.base[i]) # Compute prod(q) mod Bsk self.prod_q_mod_Bsk = [0] * self.base_Bsk.size for i in range(self.base_Bsk.size): self.prod_q_mod_Bsk[ i] = self.base_q.base_prod % self.base_Bsk.base[i] # Compute prod(B)^(-1) mod m_sk self.inv_prod_B_mod_m_sk = self.base_B.base_prod % self.m_sk self.inv_prod_B_mod_m_sk = invert_mod(self.inv_prod_B_mod_m_sk, self.m_sk) # Compute prod(B) mod q self.prod_B_mod_q = [0] * self.base_q.size for i in range(self.base_q.size): self.prod_B_mod_q[i] = self.base_B.base_prod % self.base_q.base[i] # Compute prod(q)^(-1) mod Bsk self.inv_prod_q_mod_Bsk = [0] * self.base_Bsk.size for i in range(self.base_Bsk.size): self.inv_prod_q_mod_Bsk[ i] = self.base_q.base_prod % self.base_Bsk.base[i] self.inv_prod_q_mod_Bsk[i] = invert_mod(self.inv_prod_q_mod_Bsk[i], self.base_Bsk.base[i]) if self.t != 0: # Compute -prod(q)^(-1) mod {t, gamma} self.neg_inv_q_mod_t_gamma = [0] * self.base_t_gamma_size for i in range(self.base_t_gamma_size): self.neg_inv_q_mod_t_gamma[ i] = self.base_q.base_prod % self.base_t_gamma.base[i] self.neg_inv_q_mod_t_gamma[i] = invert_mod( self.neg_inv_q_mod_t_gamma[i], self.base_t_gamma.base[i]) self.neg_inv_q_mod_t_gamma[i] = negate_mod( self.neg_inv_q_mod_t_gamma[i], self.base_t_gamma.base[i]) # Compute q[last]^(-1) mod q[i] for i = 0..last-1 # This is used by modulus switching and rescaling self.inv_q_last_mod_q = [0] * (base_q_size - 1) for i in range(base_q_size - 1): self.inv_q_last_mod_q[i] = invert_mod(self.q[-1], self.q[i])