Esempio n. 1
0
    def test_repr_roundtrip(self):
        vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
        vals += [-v for v in vals]

        # Complex(repr(z)) should recover z exactly, even for Complex
        # numbers involving an infinity, nan, or negative zero
        for x in vals:
            for y in vals:
                z = Complex(x, y)
                roundtrip = Complex(repr(z))
                self.assertFloatsAreIdentical(z.real, roundtrip.real)
                self.assertFloatsAreIdentical(z.imag, roundtrip.imag)

        # if we predefine some constants, then eval(repr(z)) should
        # also work, except that it might change the sign of zeros
        inf, nan = float("inf"), float("nan")
        infj, nanj = Complex(0.0, inf), Complex(0.0, nan)  # noqa: F841
        for x in vals:
            for y in vals:
                z = Complex(x, y)
                roundtrip = eval(repr(z))
                # adding 0.0 has no effect beside changing -0.0 to 0.0
                self.assertFloatsAreIdentical(0.0 + z.real,
                                              0.0 + roundtrip.real)
                self.assertFloatsAreIdentical(0.0 + z.imag,
                                              0.0 + roundtrip.imag)
Esempio n. 2
0
 def test_getnewargs(self):
     self.assertEqual((1 + 2j).__getnewargs__(), (1.0, 2.0))
     self.assertEqual((1 - 2j).__getnewargs__(), (1.0, -2.0))
     self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
     self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
     self.assertEqual(Complex(0, INF).__getnewargs__(), (0.0, INF))
     self.assertEqual(Complex(INF, 0).__getnewargs__(), (INF, 0.0))
Esempio n. 3
0
def test_send(client: sy.VirtualMachineClient) -> None:
    syft_complex = Complex("2+3j")
    ptr = syft_complex.send(client)
    # Check pointer type
    assert ptr.__class__.__name__ == "ComplexPointer"

    # Check that we can get back the object
    res = ptr.get()
    assert res == syft_complex
Esempio n. 4
0
 def test_underscores(self):
     # check underscores
     for lit in VALID_UNDERSCORE_LITERALS:
         if not any(ch in lit for ch in "xXoObB"):
             self.assertEqual(Complex(lit), eval(lit))
             self.assertEqual(Complex(lit), Complex(lit.replace("_", "")))
     for lit in INVALID_UNDERSCORE_LITERALS:
         if lit in ("0_7", "09_99"):  # octals are not recognized here
             continue
         if not any(ch in lit for ch in "xXoObB"):
             self.assertRaises(ValueError, Complex, lit)
Esempio n. 5
0
def test_serde() -> None:
    syft_complex = Complex("2+3j")

    serialized = syft_complex._object2proto()

    assert isinstance(serialized, Complex_PB)

    deserialized = Complex._proto2object(proto=serialized)

    assert isinstance(deserialized, Complex)
    assert deserialized.id == syft_complex.id
    assert deserialized == syft_complex
Esempio n. 6
0
def test_send() -> None:
    alice = sy.VirtualMachine(name="alice")
    alice_client = alice.get_client()

    syft_complex = Complex("2+3j")
    ptr = syft_complex.send(alice_client)
    # Check pointer type
    assert ptr.__class__.__name__ == "ComplexPointer"

    # Check that we can get back the object
    res = ptr.get()
    assert res == syft_complex
Esempio n. 7
0
    def test_truediv(self):
        simple_real = [float(i) for i in range(-5, 6)]
        simple_complex = [Complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive Complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(Complex(1e200, 1e200), 1 + 0j)
        self.check_div(Complex(1e-200, 1e-200), 1 + 0j)

        # Just for fun.
        for i in range(100):
            self.check_div(Complex(random(), random()), Complex(random(), random()))

        self.assertRaises(ZeroDivisionError, Complex.__truediv__, 1 + 1j, 0 + 0j)
        self.assertRaises(OverflowError, pow, 1e200 + 1j, 1e200 + 1j)

        self.assertAlmostEqual(Complex.__truediv__(2 + 0j, 1 + 1j), 1 - 1j)
        self.assertRaises(ZeroDivisionError, Complex.__truediv__, 1 + 1j, 0 + 0j)

        for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
            z = Complex(0, 0) / Complex(denom_real, denom_imag)
            self.assertTrue(isnan(z.real))
            self.assertTrue(isnan(z.imag))
Esempio n. 8
0
 def test_abs(self):
     nums = [
         Complex(x / 3.0, y / 7.0) for x in range(-9, 9)
         for y in range(-9, 9)
     ]
     for num in nums:
         self.assertAlmostEqual((num.real**2 + num.imag**2)**0.5, abs(num))
Esempio n. 9
0
    def test_negative_zero_repr_str(self):
        def test(v, expected, test_fn=self.assertEqual):
            test_fn(repr(v), expected)
            test_fn(str(v), expected)

        test(Complex(0.0, 1.0), "1j")
        test(Complex(-0.0, 1.0), "(-0+1j)")
        test(Complex(0.0, -1.0), "-1j")
        test(Complex(-0.0, -1.0), "(-0-1j)")

        test(Complex(0.0, 0.0), "0j")
        test(Complex(0.0, -0.0), "-0j")
        test(Complex(-0.0, 0.0), "(-0+0j)")
        test(Complex(-0.0, -0.0), "(-0-0j)")
Esempio n. 10
0
    def test_constructor_special_numbers(self):
        class complex2(complex):
            pass

        for x in 0.0, -0.0, INF, -INF, NAN:
            for y in 0.0, -0.0, INF, -INF, NAN:
                with self.subTest(x=x, y=y):
                    z = Complex(x, y)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = complex2(x, y)
                    self.assertIs(type(z), complex2)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = Complex(complex2(x, y))
                    self.assertIs(type(z), Complex)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
                    z = complex2(Complex(x, y))
                    self.assertIs(type(z), complex2)
                    self.assertFloatsAreIdentical(z.real, x)
                    self.assertFloatsAreIdentical(z.imag, y)
Esempio n. 11
0
 def test_conjugate(self):
     self.assertClose(Complex(5.3, 9.8).conjugate(), 5.3 - 9.8j)
Esempio n. 12
0
    def test_repr_str(self):
        def test(v, expected, test_fn=self.assertEqual):
            test_fn(repr(v), expected)
            test_fn(str(v), expected)

        test(1 + 6j, "(1+6j)")
        test(1 - 6j, "(1-6j)")

        test(-(1 + 0j), "(-1+-0j)", test_fn=self.assertNotEqual)

        test(Complex(1.0, INF), "(1+infj)")
        test(Complex(1.0, -INF), "(1-infj)")
        test(Complex(INF, 1), "(inf+1j)")
        test(Complex(-INF, INF), "(-inf+infj)")
        test(Complex(NAN, 1), "(nan+1j)")
        test(Complex(1, NAN), "(1+nanj)")
        test(Complex(NAN, NAN), "(nan+nanj)")

        test(Complex(0, INF), "infj")
        test(Complex(0, -INF), "-infj")
        test(Complex(0, NAN), "nanj")

        self.assertEqual(1 - 6j, Complex(repr(1 - 6j)))
        self.assertEqual(1 + 6j, Complex(repr(1 + 6j)))
        self.assertEqual(-6j, Complex(repr(-6j)))
        self.assertEqual(6j, Complex(repr(6j)))
Esempio n. 13
0
 def test_hash(self):
     for x in range(-30, 30):
         self.assertEqual(hash(x), hash(Complex(x, 0)))
         x /= 3.0  # now check against floating point
         self.assertEqual(hash(x), hash(Complex(x, 0.0)))
Esempio n. 14
0
 def __new__(self, value=0j):
     return Complex.__new__(self, 2 * value)
Esempio n. 15
0
 def test_overflow(self):
     self.assertEqual(Complex("1e500"), Complex(INF, 0.0))
     self.assertEqual(Complex("-1e500j"), Complex(0.0, -INF))
     self.assertEqual(Complex("-1e500+1.8e308j"), Complex(-INF, INF))
Esempio n. 16
0
 def test_boolcontext(self):
     for i in range(100):
         self.assertTrue(Complex(random() + 1e-6, random() + 1e-6))
     self.assertTrue(not Complex(0.0, 0.0))
Esempio n. 17
0
 def check(n, deltas, is_equal, imag=0.0):
     for delta in deltas:
         i = n + delta
         z = Complex(i, imag)
         self.assertIs(Complex.__eq__(z, i), is_equal(delta))
         self.assertIs(Complex.__ne__(z, i), not is_equal(delta))
Esempio n. 18
0
 def test_richcompare(self):
     self.assertIs(Complex.__eq__(1 + 1j, 1 << 10000), False)
     self.assertIs(Complex.__lt__(1 + 1j, None), NotImplemented)
     self.assertIs(Complex.__eq__(1 + 1j, 1 + 1j), True)
     self.assertIs(Complex.__eq__(1 + 1j, 2 + 2j), False)
     self.assertIs(Complex.__ne__(1 + 1j, 1 + 1j), False)
     self.assertIs(Complex.__ne__(1 + 1j, 2 + 2j), True)
     for i in range(1, 100):
         f = i / 100.0
         self.assertIs(Complex.__eq__(f + 0j, f), True)
         self.assertIs(Complex.__ne__(f + 0j, f), False)
         self.assertIs(Complex.__eq__(Complex(f, f), f), False)
         self.assertIs(Complex.__ne__(Complex(f, f), f), True)
     self.assertIs(Complex.__lt__(1 + 1j, 2 + 2j), NotImplemented)
     self.assertIs(Complex.__le__(1 + 1j, 2 + 2j), NotImplemented)
     self.assertIs(Complex.__gt__(1 + 1j, 2 + 2j), NotImplemented)
     self.assertIs(Complex.__ge__(1 + 1j, 2 + 2j), NotImplemented)
     self.assertRaises(TypeError, operator.lt, 1 + 1j, 2 + 2j)
     self.assertRaises(TypeError, operator.le, 1 + 1j, 2 + 2j)
     self.assertRaises(TypeError, operator.gt, 1 + 1j, 2 + 2j)
     self.assertRaises(TypeError, operator.ge, 1 + 1j, 2 + 2j)
     self.assertIs(operator.eq(1 + 1j, 1 + 1j), True)
     self.assertIs(operator.eq(1 + 1j, 2 + 2j), False)
     self.assertIs(operator.ne(1 + 1j, 1 + 1j), False)
     self.assertIs(operator.ne(1 + 1j, 2 + 2j), True)
Esempio n. 19
0
    def test_format(self):
        # empty format string is same as str()
        self.assertEqual(format(1 + 3j, ""), str(1 + 3j))
        self.assertEqual(format(1.5 + 3.5j, ""), str(1.5 + 3.5j))
        self.assertEqual(format(3j, ""), str(3j))
        self.assertEqual(format(3.2j, ""), str(3.2j))
        self.assertEqual(format(3 + 0j, ""), str(3 + 0j))
        self.assertEqual(format(3.2 + 0j, ""), str(3.2 + 0j))

        # empty presentation type should still be analogous to str,
        # even when format string is nonempty (issue #5920).
        self.assertEqual(format(3.2 + 0j, "-"), str(3.2 + 0j))
        self.assertEqual(format(3.2 + 0j, "<"), str(3.2 + 0j))
        z = 4 / 7.0 - 100j / 7.0
        self.assertEqual(format(z, ""), str(z))
        self.assertEqual(format(z, "-"), str(z))
        self.assertEqual(format(z, "<"), str(z))
        self.assertEqual(format(z, "10"), str(z))
        z = Complex(0.0, 3.0)
        self.assertEqual(format(z, ""), str(z))
        self.assertEqual(format(z, "-"), str(z))
        self.assertEqual(format(z, "<"), str(z))
        self.assertEqual(format(z, "2"), str(z))
        z = Complex(-0.0, 2.0)
        self.assertEqual(format(z, ""), str(z))
        self.assertEqual(format(z, "-"), str(z))
        self.assertEqual(format(z, "<"), str(z))
        self.assertEqual(format(z, "3"), str(z))

        self.assertEqual(format(1 + 3j, "g"), "1+3j")
        self.assertEqual(format(3j, "g"), "0+3j")
        self.assertEqual(format(1.5 + 3.5j, "g"), "1.5+3.5j")

        self.assertEqual(format(1.5 + 3.5j, "+g"), "+1.5+3.5j")
        self.assertEqual(format(1.5 - 3.5j, "+g"), "+1.5-3.5j")
        self.assertEqual(format(1.5 - 3.5j, "-g"), "1.5-3.5j")
        self.assertEqual(format(1.5 + 3.5j, " g"), " 1.5+3.5j")
        self.assertEqual(format(1.5 - 3.5j, " g"), " 1.5-3.5j")
        self.assertEqual(format(-1.5 + 3.5j, " g"), "-1.5+3.5j")
        self.assertEqual(format(-1.5 - 3.5j, " g"), "-1.5-3.5j")

        self.assertEqual(format(-1.5 - 3.5e-20j, "g"), "-1.5-3.5e-20j")
        self.assertEqual(format(-1.5 - 3.5j, "f"), "-1.500000-3.500000j")
        self.assertEqual(format(-1.5 - 3.5j, "F"), "-1.500000-3.500000j")
        self.assertEqual(format(-1.5 - 3.5j, "e"), "-1.500000e+00-3.500000e+00j")
        self.assertEqual(format(-1.5 - 3.5j, ".2e"), "-1.50e+00-3.50e+00j")
        self.assertEqual(format(-1.5 - 3.5j, ".2E"), "-1.50E+00-3.50E+00j")
        self.assertEqual(format(-1.5e10 - 3.5e5j, ".2G"), "-1.5E+10-3.5E+05j")

        self.assertEqual(format(1.5 + 3j, "<20g"), "1.5+3j              ")
        self.assertEqual(format(1.5 + 3j, "*<20g"), "1.5+3j**************")
        self.assertEqual(format(1.5 + 3j, ">20g"), "              1.5+3j")
        self.assertEqual(format(1.5 + 3j, "^20g"), "       1.5+3j       ")
        self.assertEqual(format(1.5 + 3j, "<20"), "(1.5+3j)            ")
        self.assertEqual(format(1.5 + 3j, ">20"), "            (1.5+3j)")
        self.assertEqual(format(1.5 + 3j, "^20"), "      (1.5+3j)      ")
        self.assertEqual(format(1.123 - 3.123j, "^20.2"), "     (1.1-3.1j)     ")

        self.assertEqual(format(1.5 + 3j, "20.2f"), "          1.50+3.00j")
        self.assertEqual(format(1.5 + 3j, ">20.2f"), "          1.50+3.00j")
        self.assertEqual(format(1.5 + 3j, "<20.2f"), "1.50+3.00j          ")
        self.assertEqual(
            format(1.5e20 + 3j, "<20.2f"), "150000000000000000000.00+3.00j"
        )
        self.assertEqual(
            format(1.5e20 + 3j, ">40.2f"), "          150000000000000000000.00+3.00j"
        )
        self.assertEqual(
            format(1.5e20 + 3j, "^40,.2f"), "  150,000,000,000,000,000,000.00+3.00j  "
        )
        self.assertEqual(
            format(1.5e21 + 3j, "^40,.2f"), " 1,500,000,000,000,000,000,000.00+3.00j "
        )
        self.assertEqual(
            format(1.5e21 + 3000j, ",.2f"), "1,500,000,000,000,000,000,000.00+3,000.00j"
        )

        # Issue 7094: Alternate formatting (specified by #)
        self.assertEqual(format(1 + 1j, ".0e"), "1e+00+1e+00j")
        self.assertEqual(format(1 + 1j, "#.0e"), "1.e+00+1.e+00j")
        self.assertEqual(format(1 + 1j, ".0f"), "1+1j")
        self.assertEqual(format(1 + 1j, "#.0f"), "1.+1.j")
        self.assertEqual(format(1.1 + 1.1j, "g"), "1.1+1.1j")
        self.assertEqual(format(1.1 + 1.1j, "#g"), "1.10000+1.10000j")

        # Alternate doesn't make a difference for these, they format the same with or without it
        self.assertEqual(format(1 + 1j, ".1e"), "1.0e+00+1.0e+00j")
        self.assertEqual(format(1 + 1j, "#.1e"), "1.0e+00+1.0e+00j")
        self.assertEqual(format(1 + 1j, ".1f"), "1.0+1.0j")
        self.assertEqual(format(1 + 1j, "#.1f"), "1.0+1.0j")

        # Misc. other alternate tests
        self.assertEqual(format((-1.5 + 0.5j), "#f"), "-1.500000+0.500000j")
        self.assertEqual(format((-1.5 + 0.5j), "#.0f"), "-2.+0.j")
        self.assertEqual(format((-1.5 + 0.5j), "#e"), "-1.500000e+00+5.000000e-01j")
        self.assertEqual(format((-1.5 + 0.5j), "#.0e"), "-2.e+00+5.e-01j")
        self.assertEqual(format((-1.5 + 0.5j), "#g"), "-1.50000+0.500000j")
        self.assertEqual(format((-1.5 + 0.5j), ".0g"), "-2+0.5j")
        self.assertEqual(format((-1.5 + 0.5j), "#.0g"), "-2.+0.5j")

        # zero padding is invalid
        self.assertRaises(ValueError, (1.5 + 0.5j).__format__, "010f")

        # '=' alignment is invalid
        self.assertRaises(ValueError, (1.5 + 3j).__format__, "=20")

        # integer presentation types are an error
        for t in "bcdoxX":
            self.assertRaises(ValueError, (1.5 + 0.5j).__format__, t)

        # make sure everything works in ''.format()
        self.assertEqual(f"*{3.14159 + 2.71828j:.3f}*", "*3.142+2.718j*")

        # issue 3382
        self.assertEqual(format(Complex(NAN, NAN), "f"), "nan+nanj")
        self.assertEqual(format(Complex(1, NAN), "f"), "1.000000+nanj")
        self.assertEqual(format(Complex(NAN, 1), "f"), "nan+1.000000j")
        self.assertEqual(format(Complex(NAN, -1), "f"), "nan-1.000000j")
        self.assertEqual(format(Complex(NAN, NAN), "F"), "NAN+NANj")
        self.assertEqual(format(Complex(1, NAN), "F"), "1.000000+NANj")
        self.assertEqual(format(Complex(NAN, 1), "F"), "NAN+1.000000j")
        self.assertEqual(format(Complex(NAN, -1), "F"), "NAN-1.000000j")
        self.assertEqual(format(Complex(INF, INF), "f"), "inf+infj")
        self.assertEqual(format(Complex(1, INF), "f"), "1.000000+infj")
        self.assertEqual(format(Complex(INF, 1), "f"), "inf+1.000000j")
        self.assertEqual(format(Complex(INF, -1), "f"), "inf-1.000000j")
        self.assertEqual(format(Complex(INF, INF), "F"), "INF+INFj")
        self.assertEqual(format(Complex(1, INF), "F"), "1.000000+INFj")
        self.assertEqual(format(Complex(INF, 1), "F"), "INF+1.000000j")
        self.assertEqual(format(Complex(INF, -1), "F"), "INF-1.000000j")
Esempio n. 20
0
    def test_constructor(self):
        class OS:
            def __init__(self, value):
                self.value = value

            def __complex__(self):
                return self.value

        class NS(object):
            def __init__(self, value):
                self.value = value

            def __complex__(self):
                return self.value

        self.assertEqual(Complex(OS(1 + 10j)), 1 + 10j)
        self.assertEqual(Complex(NS(1 + 10j)), 1 + 10j)
        self.assertRaises(TypeError, Complex, OS(None))
        self.assertRaises(TypeError, Complex, NS(None))
        self.assertRaises(TypeError, Complex, {})
        self.assertRaises(TypeError, Complex, NS(1.5))
        self.assertRaises(TypeError, Complex, NS(1))

        self.assertAlmostEqual(Complex("1+10j"), 1 + 10j)
        self.assertAlmostEqual(Complex(10), 10 + 0j)
        self.assertAlmostEqual(Complex(10.0), 10 + 0j)
        self.assertAlmostEqual(Complex(10), 10 + 0j)
        self.assertAlmostEqual(Complex(10 + 0j), 10 + 0j)
        self.assertAlmostEqual(Complex(1, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1, 10.0), 1 + 10j)
        self.assertAlmostEqual(Complex(1, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1, 10.0), 1 + 10j)
        self.assertAlmostEqual(Complex(1.0, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1.0, 10), 1 + 10j)
        self.assertAlmostEqual(Complex(1.0, 10.0), 1 + 10j)
        self.assertAlmostEqual(Complex(3.14 + 0j), 3.14 + 0j)
        self.assertAlmostEqual(Complex(3.14), 3.14 + 0j)
        self.assertAlmostEqual(Complex(314), 314.0 + 0j)
        self.assertAlmostEqual(Complex(314), 314.0 + 0j)
        self.assertAlmostEqual(Complex(3.14 + 0j, 0j), 3.14 + 0j)
        self.assertAlmostEqual(Complex(3.14, 0.0), 3.14 + 0j)
        self.assertAlmostEqual(Complex(314, 0), 314.0 + 0j)
        self.assertAlmostEqual(Complex(314, 0), 314.0 + 0j)
        self.assertAlmostEqual(Complex(0j, 3.14j), -3.14 + 0j)
        self.assertAlmostEqual(Complex(0.0, 3.14j), -3.14 + 0j)
        self.assertAlmostEqual(Complex(0j, 3.14), 3.14j)
        self.assertAlmostEqual(Complex(0.0, 3.14), 3.14j)
        self.assertAlmostEqual(Complex("1"), 1 + 0j)
        self.assertAlmostEqual(Complex("1j"), 1j)
        self.assertAlmostEqual(Complex(), 0)
        self.assertAlmostEqual(Complex("-1"), -1)
        self.assertAlmostEqual(Complex("+1"), +1)
        self.assertAlmostEqual(Complex("(1+2j)"), 1 + 2j)
        self.assertAlmostEqual(Complex("(1.3+2.2j)"), 1.3 + 2.2j)
        self.assertAlmostEqual(Complex("3.14+1J"), 3.14 + 1j)
        self.assertAlmostEqual(Complex(" ( +3.14-6J )"), 3.14 - 6j)
        self.assertAlmostEqual(Complex(" ( +3.14-J )"), 3.14 - 1j)
        self.assertAlmostEqual(Complex(" ( +3.14+j )"), 3.14 + 1j)
        self.assertAlmostEqual(Complex("J"), 1j)
        self.assertAlmostEqual(Complex("( j )"), 1j)
        self.assertAlmostEqual(Complex("+J"), 1j)
        self.assertAlmostEqual(Complex("( -j)"), -1j)
        self.assertAlmostEqual(Complex("1e-500"), 0.0 + 0.0j)
        self.assertAlmostEqual(Complex("-1e-500j"), 0.0 - 0.0j)
        self.assertAlmostEqual(Complex("-1e-500+1e-500j"), -0.0 + 0.0j)

        class complex2(complex):
            pass

        self.assertAlmostEqual(Complex(complex2(1 + 1j)), 1 + 1j)
        self.assertAlmostEqual(Complex(real=17, imag=23), 17 + 23j)
        self.assertAlmostEqual(Complex(real=17 + 23j), 17 + 23j)
        self.assertAlmostEqual(Complex(real=17 + 23j, imag=23), 17 + 46j)
        self.assertAlmostEqual(Complex(real=1 + 2j, imag=3 + 4j), -3 + 5j)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.  (These checks
        # are harmless on systems without support for signed zeros.)
        def split_zeros(x):
            """Function that produces different results for 0. and -0."""
            return atan2(x, -1.0)

        self.assertEqual(split_zeros(Complex(1.0, 0.0).imag), split_zeros(0.0))
        self.assertEqual(split_zeros(Complex(1.0, -0.0).imag), split_zeros(-0.0))
        self.assertEqual(split_zeros(Complex(0.0, 1.0).real), split_zeros(0.0))
        self.assertEqual(split_zeros(Complex(-0.0, 1.0).real), split_zeros(-0.0))

        # c = 3.14 + 1j
        # self.assertTrue(Complex(c) is c)
        # del c

        self.assertRaises(TypeError, Complex, "1", "1")
        self.assertRaises(TypeError, Complex, 1, "1")

        # SF bug 543840:  Complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, Complex, "1+1j\0j")

        self.assertRaises(TypeError, int, 5 + 3j)
        self.assertRaises(TypeError, int, 5 + 3j)
        self.assertRaises(TypeError, float, 5 + 3j)
        self.assertRaises(ValueError, Complex, "")
        # FIXME improve Complex.__new__() to have the same TypeError as complex
        # self.assertRaises(TypeError, Complex, None)
        # self.assertRaisesRegex(TypeError, "not 'NoneType'", Complex, None)
        self.assertRaises(ValueError, Complex, "\0")
        self.assertRaises(ValueError, Complex, "3\09")
        self.assertRaises(TypeError, Complex, "1", "2")
        self.assertRaises(TypeError, Complex, "1", 42)
        self.assertRaises(TypeError, Complex, 1, "2")
        self.assertRaises(ValueError, Complex, "1+")
        self.assertRaises(ValueError, Complex, "1+1j+1j")
        self.assertRaises(ValueError, Complex, "--")
        self.assertRaises(ValueError, Complex, "(1+2j")
        self.assertRaises(ValueError, Complex, "1+2j)")
        self.assertRaises(ValueError, Complex, "1+(2j)")
        self.assertRaises(ValueError, Complex, "(1+2j)123")
        self.assertRaises(ValueError, Complex, "x")
        self.assertRaises(ValueError, Complex, "1j+2")
        self.assertRaises(ValueError, Complex, "1e1ej")
        self.assertRaises(ValueError, Complex, "1e++1ej")
        self.assertRaises(ValueError, Complex, ")1+2j(")
        self.assertRaisesRegex(
            TypeError,
            "first argument must be a string or a number, not 'dict'",
            Complex,
            {1: 2},
            1,
        )
        self.assertRaisesRegex(
            TypeError,
            "second argument must be a number, not 'dict'",
            Complex,
            1,
            {1: 2},
        )
        # the following three are accepted by Python 2.6
        self.assertRaises(ValueError, Complex, "1..1j")
        self.assertRaises(ValueError, Complex, "1.11.1j")
        self.assertRaises(ValueError, Complex, "1e1.1j")

        # check that Complex accepts long unicode strings
        self.assertEqual(type(Complex("1" * 500)), Complex)
        # check whitespace processing
        self.assertEqual(Complex("\N{EM SPACE}(\N{EN SPACE}1+1j ) "), 1 + 1j)
        # Invalid unicode string
        # See bpo-34087
        self.assertRaises(ValueError, Complex, "\u3053\u3093\u306b\u3061\u306f")

        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        self.assertRaises(EvilExc, Complex, evilcomplex())

        class float2:
            def __init__(self, value):
                self.value = value

            def __float__(self):
                return self.value

        self.assertAlmostEqual(Complex(float2(42.0)), 42)
        self.assertAlmostEqual(Complex(real=float2(17.0), imag=float2(23.0)), 17 + 23j)
        self.assertRaises(TypeError, Complex, float2(None))

        # FIXME doesn't work
        # class MyIndex:
        #     def __init__(self, value):
        #         self.value = value

        #     def __index__(self):
        #         return self.value

        # self.assertAlmostEqual(Complex(MyIndex(42)), 42.0 + 0.0j)
        # self.assertAlmostEqual(Complex(123, MyIndex(42)), 123.0 + 42.0j)
        # self.assertRaises(OverflowError, Complex, MyIndex(2 ** 2000))
        # self.assertRaises(OverflowError, Complex, 123, MyIndex(2 ** 2000))

        class MyInt:
            def __int__(self):
                return 42

        self.assertRaises(TypeError, Complex, MyInt())
        self.assertRaises(TypeError, Complex, 123, MyInt())

        class complex0(Complex):
            """Test usage of __complex__() when inheriting from 'Complex'"""

            def __complex__(self):
                return 42j

        class complex1(Complex):
            """Test usage of __complex__() with a __new__() method"""

            def __new__(self, value=0j):
                return Complex.__new__(self, 2 * value)

            def __complex__(self):
                return self

        class complex2(Complex):
            """Make sure that __complex__() calls fail if anything other than a
            Complex is returned"""

            def __complex__(self):
                return None

        self.assertEqual(Complex(complex0(1j)), 42j)
        if sys.version_info >= (3, 7):
            # Only deprecated from python 3.7
            with self.assertWarns(DeprecationWarning):
                self.assertEqual(Complex(complex1(1j)), 2j)
        self.assertRaises(TypeError, Complex, complex2(1j))