Esempio n. 1
0
def fcn_top_1(feat, classifier1, fc_name, classifier2, fc_name2, classes, bootstrapping=False):
    crop_size = 224
    
    top = feat
    for j, layer in enumerate(classifier1[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top = conv_stage_v1(top, 'conv6{}'.format(chr(j+97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer = classifier1[-1]
    scores = conv(top, fc_name,
                  layer.channels,
                  kernel=layer.kernel,
                  dilate=layer.dilate)
    print 'Scores'
    print scores.infer_shape(data=(64, 3, crop_size, crop_size))[1]




    top2 = feat
    for j, layer in enumerate(classifier2[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top2 = conv_stage_v1(top2, 'conv6{}'.format(chr(j+97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer2 = classifier2[-1]

    scores2 = conv(top2, fc_name2,
                  layer2.channels,
                  kernel=layer2.kernel,
                  dilate=layer2.dilate)
    print 'Scores'
    #print scores.infer_shape(data=(64, 3, crop_size, crop_size))[1]


    classifier21 = rn_top_1(scores2, 'linear{}'.format(classes), classes)
    
    if not bootstrapping:
        return softmax_out(scores, multi_output=True), softmax_out(scores)
    else:
        from layer import OhemSoftmax, OhemSoftmaxProp
        return mx.sym.Custom(data=scores, name='softmax',
                             op_type='ohem_softmax',
                             ignore_label=255,
                             # ignore_label=65,
                             thresh=0.6,
                             min_kept=256,
                             margin=-1), softmax_out(scores)
Esempio n. 2
0
def fcn_top(feat, classifier, fc_name, bootstrapping=False):
    crop_size = 224
    
    top = feat
    for j, layer in enumerate(classifier[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top = conv_stage_v1(top, 'conv6{}'.format(chr(j+97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer = classifier[-1]
    scores = conv(top, fc_name,
                  layer.channels,
                  kernel=layer.kernel,
                  dilate=layer.dilate)
    print 'Scores'
    print scores.infer_shape(data=(64, 3, crop_size, crop_size))[1]
    
    if not bootstrapping:
        return softmax_out(scores, multi_output=True)
    else:
        from layer import OhemSoftmax, OhemSoftmaxProp
        return mx.sym.Custom(data=scores, name='softmax',
                             op_type='ohem_softmax',
                             ignore_label=255,
                             thresh=0.6,
                             min_kept=256,
                             margin=-1)
Esempio n. 3
0
def fcn_top(feat, classifier, fc_name):
    top = feat
    for j, layer in enumerate(classifier[:-1]):
        top = conv_state_v1(top,
                            'conv6{}'.format(chr(j + 97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer = classifier[-1]
    scores = conv(top,
                  fc_name,
                  layer.channels,
                  kernel=layer.kernel,
                  dilate=layer.dilate)
    return softmax_out(scores, multi_output=True)
Esempio n. 4
0
def fcn_top(feat, classifier, fc_name):
    top = feat
    for j, layer in enumerate(classifier[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top = conv_state_v1(top,
                            'conv6{}'.format(chr(j + 97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer = classifier[-1]
    scores = conv(top,
                  fc_name,
                  layer.channels,
                  kernel=layer.kernel,
                  dilate=layer.dilate)
    return softmax_out(scores, multi_output=True)
Esempio n. 5
0
def rn_top(feat, fc_name, classes):
    pool7 = pool(feat, 'pool7', pool_type='avg', global_pool=True)
    scores = fc(pool7, fc_name, classes)
    return softmax_out(scores)
Esempio n. 6
0
def rn_top(feat, fc_name, classes):
    pool7 = pool(feat, 'pool7', pool_type='avg', global_pool=True)
    scores = fc(pool7, fc_name, classes)
    return softmax_out(scores)
Esempio n. 7
0
def fcn_top_1(feat,
              classifier1,
              fc_name,
              classifier2,
              fc_name2,
              classes,
              bootstrapping=False):
    crop_size = 224

    top = feat
    for j, layer in enumerate(classifier1[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top = conv_stage_v1(top,
                            'conv6{}'.format(chr(j + 97)),
                            layer.channels,
                            kernel=layer.kernel,
                            dilate=layer.dilate,
                            dropout_rate=0.)
    layer = classifier1[-1]
    scores = conv(top,
                  fc_name,
                  layer.channels,
                  kernel=layer.kernel,
                  dilate=layer.dilate)
    print 'Scores'
    print scores.infer_shape(data=(64, 3, crop_size, crop_size))[1]

    top2 = feat
    for j, layer2 in enumerate(classifier2[:-1]):
        # This naming (conv6) is derived from the ResNets (with five levels),
        # which is not accurate for our networks (with seven levels).
        top2 = conv_stage_v1(top2,
                             'conv61{}'.format(chr(j + 97)),
                             layer2.channels,
                             kernel=layer2.kernel,
                             dilate=layer2.dilate,
                             dropout_rate=0.)
    layer2 = classifier2[-1]

    scores2 = conv(top2,
                   fc_name2,
                   layer2.channels,
                   kernel=layer2.kernel,
                   dilate=layer2.dilate)
    print 'Scores'
    print scores2.infer_shape(data=(64, 3, crop_size, crop_size))[1]

    #print ('I am here')
    classifier21 = rn_top_1(scores2, 'bCls0', classes)
    print classifier21.infer_shape(data=(64, 3, crop_size, crop_size))[1]

    #mx.symbol.Group([sm1, sm2])

    #print 'I am here'
    print bootstrapping, classes, classifier21
    if not bootstrapping:
        #print 'I am here'
        return mx.symbol.Group(
            [softmax_out(scores, multi_output=True), classifier21])
    else:
        print 'I am here'
        from layer import OhemSoftmax, OhemSoftmaxProp
        return mx.symbol.Group([
            mx.sym.Custom(
                data=scores,
                name='softmax',
                op_type='ohem_softmax',
                ignore_label=255,
                # ignore_label=65,
                thresh=0.6,
                min_kept=256,
                margin=-1),
            classifier21
        ])


#def fcrna_model_a1_1(classes, inv_resolution=8, bootstrapping=False):
    '''FCRNA Model A1_1'''
    '''feat = rna_feat_a1(inv_resolution, dropout=True)