Esempio n. 1
0
def sample_rois(rois, gt_boxes, num_classes, rois_per_image, fg_rois_per_image, fg_overlap, box_stds):
    """
    generate random sample of ROIs comprising foreground and background examples
    :param rois: [n, 5] (batch_index, x1, y1, x2, y2)
    :param gt_boxes: [n, 5] (x1, y1, x2, y2, cls)
    :param num_classes: number of classes
    :param rois_per_image: total roi number
    :param fg_rois_per_image: foreground roi number
    :param fg_overlap: overlap threshold for fg rois
    :param box_stds: std var of bbox reg
    :return: (rois, labels, bbox_targets, bbox_weights)
    """
    overlaps = bbox_overlaps(rois[:, 1:], gt_boxes[:, :4])
    gt_assignment = overlaps.argmax(axis=1)
    labels = gt_boxes[gt_assignment, 4]
    max_overlaps = overlaps.max(axis=1)

    # select foreground RoI with FG_THRESH overlap
    fg_indexes = np.where(max_overlaps >= fg_overlap)[0]
    # guard against the case when an image has fewer than fg_rois_per_image foreground RoIs
    fg_rois_this_image = min(fg_rois_per_image, len(fg_indexes))
    # sample foreground regions without replacement
    if len(fg_indexes) > fg_rois_this_image:
        fg_indexes = np.random.choice(fg_indexes, size=fg_rois_this_image, replace=False)

    # select background RoIs as those within [0, FG_THRESH)
    bg_indexes = np.where(max_overlaps < fg_overlap)[0]
    # compute number of background RoIs to take from this image (guarding against there being fewer than desired)
    bg_rois_this_image = rois_per_image - fg_rois_this_image
    bg_rois_this_image = min(bg_rois_this_image, len(bg_indexes))
    # sample bg rois without replacement
    if len(bg_indexes) > bg_rois_this_image:
        bg_indexes = np.random.choice(bg_indexes, size=bg_rois_this_image, replace=False)

    # indexes selected
    keep_indexes = np.append(fg_indexes, bg_indexes)
    # pad more bg rois to ensure a fixed minibatch size
    while len(keep_indexes) < rois_per_image:
        gap = min(len(bg_indexes), rois_per_image - len(keep_indexes))
        gap_indexes = np.random.choice(range(len(bg_indexes)), size=gap, replace=False)
        keep_indexes = np.append(keep_indexes, bg_indexes[gap_indexes])

    # sample rois and labels
    rois = rois[keep_indexes]
    labels = labels[keep_indexes]
    # set labels of bg rois to be 0
    labels[fg_rois_this_image:] = 0

    # load or compute bbox_target
    targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment[keep_indexes], :4], box_stds=box_stds)
    bbox_targets = np.zeros((rois_per_image, 4 * num_classes), dtype=np.float32)
    bbox_weights = np.zeros((rois_per_image, 4 * num_classes), dtype=np.float32)
    for i in range(fg_rois_this_image):
        cls_ind = int(labels[i])
        bbox_targets[i, cls_ind * 4:(cls_ind + 1) * 4] = targets[i]
        bbox_weights[i, cls_ind * 4:(cls_ind + 1) * 4] = 1

    return rois, labels, bbox_targets, bbox_weights
Esempio n. 2
0
def sample_rois(rois, gt_boxes, num_classes, rois_per_image, fg_rois_per_image, fg_overlap, box_stds):
    """
    generate random sample of ROIs comprising foreground and background examples
    :param rois: [n, 5] (batch_index, x1, y1, x2, y2)
    :param gt_boxes: [n, 5] (x1, y1, x2, y2, cls)
    :param num_classes: number of classes
    :param rois_per_image: total roi number
    :param fg_rois_per_image: foreground roi number
    :param fg_overlap: overlap threshold for fg rois
    :param box_stds: std var of bbox reg
    :return: (labels, rois, bbox_targets, bbox_weights)
    """
    overlaps = bbox_overlaps(rois[:, 1:], gt_boxes[:, :4])
    gt_assignment = overlaps.argmax(axis=1)
    labels = gt_boxes[gt_assignment, 4]
    max_overlaps = overlaps.max(axis=1)

    # select foreground RoI with FG_THRESH overlap
    fg_indexes = np.where(max_overlaps >= fg_overlap)[0]
    # guard against the case when an image has fewer than fg_rois_per_image foreground RoIs
    fg_rois_this_image = min(fg_rois_per_image, len(fg_indexes))
    # sample foreground regions without replacement
    if len(fg_indexes) > fg_rois_this_image:
        fg_indexes = np.random.choice(fg_indexes, size=fg_rois_this_image, replace=False)

    # select background RoIs as those within [0, FG_THRESH)
    bg_indexes = np.where(max_overlaps < fg_overlap)[0]
    # compute number of background RoIs to take from this image (guarding against there being fewer than desired)
    bg_rois_this_image = rois_per_image - fg_rois_this_image
    bg_rois_this_image = min(bg_rois_this_image, len(bg_indexes))
    # sample bg rois without replacement
    if len(bg_indexes) > bg_rois_this_image:
        bg_indexes = np.random.choice(bg_indexes, size=bg_rois_this_image, replace=False)

    # indexes selected
    keep_indexes = np.append(fg_indexes, bg_indexes)
    # pad more bg rois to ensure a fixed minibatch size
    while len(keep_indexes) < rois_per_image:
        gap = min(len(bg_indexes), rois_per_image - len(keep_indexes))
        gap_indexes = np.random.choice(range(len(bg_indexes)), size=gap, replace=False)
        keep_indexes = np.append(keep_indexes, bg_indexes[gap_indexes])

    # sample rois and labels
    rois = rois[keep_indexes]
    labels = labels[keep_indexes]
    # set labels of bg rois to be 0
    labels[fg_rois_this_image:] = 0

    # load or compute bbox_target
    targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment[keep_indexes], :4], box_stds=box_stds)
    bbox_targets = np.zeros((rois_per_image, 4 * num_classes), dtype=np.float32)
    bbox_weights = np.zeros((rois_per_image, 4 * num_classes), dtype=np.float32)
    for i in range(fg_rois_this_image):
        cls_ind = int(labels[i])
        bbox_targets[i, cls_ind * 4:(cls_ind + 1) * 4] = targets[i]
        bbox_weights[i, cls_ind * 4:(cls_ind + 1) * 4] = 1

    return rois, labels, bbox_targets, bbox_weights
Esempio n. 3
0
    def assign(self, anchors, gt_boxes, im_height, im_width):
        # print(anchors)
        num_anchors = anchors.shape[0]

        # filter out padded gt_boxes
        valid_labels = np.where(gt_boxes[:, -1] > 0)[0]
        gt_boxes = gt_boxes[valid_labels]

        # filter out anchors outside the region
        #BIYUJI
        # print(anchors[0])
        # print('anchor shape are:\n', anchors.shape, '\n')
        # print('im info\n', self._allowed_border, im_height, im_width)
        inds_inside = np.where(
            (anchors[:, 0] >= -self._allowed_border)
            & (anchors[:, 2] < im_width + self._allowed_border)
            & (anchors[:, 1] >= -self._allowed_border)
            & (anchors[:, 3] < im_height + self._allowed_border))[0]
        anchors = anchors[inds_inside, :]
        num_valid = len(inds_inside)
        # raise Exception('?')

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.ones((num_valid, ), dtype=np.float32) * -1
        bbox_targets = np.zeros((num_valid, 4), dtype=np.float32)
        bbox_weights = np.zeros((num_valid, 4), dtype=np.float32)

        # sample for positive labels
        if num_valid:
            if gt_boxes.size > 0:
                # overlap between the anchors and the gt boxes
                # overlaps (ex, gt)
                overlaps = bbox_overlaps(anchors.astype(np.float),
                                         gt_boxes.astype(np.float))

                # fg anchors: anchor with highest overlap for each gt
                gt_max_overlaps = overlaps.max(axis=0)
                argmax_inds = np.where(overlaps == gt_max_overlaps)[0]
                labels[argmax_inds] = 1

                # fg anchors: anchor with overlap > iou thresh
                max_overlaps = overlaps.max(axis=1)
                labels[max_overlaps >= self._fg_overlap] = 1

                # bg anchors: anchor with overlap < iou thresh
                labels[max_overlaps < self._bg_overlap] = 0

                # sanity check
                fg_inds = np.where(labels == 1)[0]
                bg_inds = np.where(labels == 0)[0]
                assert len(np.intersect1d(fg_inds, bg_inds)) == 0

                # subsample positive anchors
                cur_fg = len(fg_inds)
                if cur_fg > self._num_fg:
                    disable_inds = np.random.choice(fg_inds,
                                                    size=(cur_fg -
                                                          self._num_fg),
                                                    replace=False)
                    labels[disable_inds] = -1

                # subsample negative anchors
                cur_bg = len(bg_inds)
                max_neg = self._num_batch - min(self._num_fg, cur_fg)
                if cur_bg > max_neg:
                    disable_inds = np.random.choice(bg_inds,
                                                    size=(cur_bg - max_neg),
                                                    replace=False)
                    labels[disable_inds] = -1

                # assign to argmax overlap
                fg_inds = np.where(labels == 1)[0]
                argmax_overlaps = overlaps.argmax(axis=1)
                bbox_targets[fg_inds, :] = bbox_transform(
                    anchors[fg_inds, :],
                    gt_boxes[argmax_overlaps[fg_inds], :],
                    box_stds=(1.0, 1.0, 1.0, 1.0))

                # only fg anchors has bbox_targets
                bbox_weights[fg_inds, :] = 1
            else:
                # randomly draw bg anchors
                bg_inds = np.random.choice(np.arange(num_valid),
                                           size=self._num_batch,
                                           replace=False)
                labels[bg_inds] = 0

        all_labels = np.ones((num_anchors, ), dtype=np.float32) * -1
        all_labels[inds_inside] = labels
        all_bbox_targets = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_targets[inds_inside, :] = bbox_targets
        all_bbox_weights = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_weights[inds_inside, :] = bbox_weights

        return all_labels, all_bbox_targets, all_bbox_weights
Esempio n. 4
0
    def assign(self, anchors, gt_boxes, im_height, im_width):
        num_anchors = anchors.shape[0]

        # filter out padded gt_boxes
        valid_labels = np.where(gt_boxes[:, -1] > 0)[0]
        gt_boxes = gt_boxes[valid_labels]

        # filter out anchors outside the region
        inds_inside = np.where((anchors[:, 0] >= -self._allowed_border) &
                               (anchors[:, 2] < im_width + self._allowed_border) &
                               (anchors[:, 1] >= -self._allowed_border) &
                               (anchors[:, 3] < im_height + self._allowed_border))[0]
        anchors = anchors[inds_inside, :]
        num_valid = len(inds_inside)

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.ones((num_valid,), dtype=np.float32) * -1
        bbox_targets = np.zeros((num_valid, 4), dtype=np.float32)
        bbox_weights = np.zeros((num_valid, 4), dtype=np.float32)

        # sample for positive labels
        if gt_boxes.size > 0:
            # overlap between the anchors and the gt boxes
            # overlaps (ex, gt)
            overlaps = bbox_overlaps(anchors.astype(np.float), gt_boxes.astype(np.float))

            # fg anchors: anchor with highest overlap for each gt
            gt_max_overlaps = overlaps.max(axis=0)
            argmax_inds = np.where(overlaps == gt_max_overlaps)[0]
            labels[argmax_inds] = 1

            # fg anchors: anchor with overlap > iou thresh
            max_overlaps = overlaps.max(axis=1)
            labels[max_overlaps >= self._fg_overlap] = 1

            # bg anchors: anchor with overlap < iou thresh
            labels[max_overlaps < self._bg_overlap] = 0

            # sanity check
            fg_inds = np.where(labels == 1)[0]
            bg_inds = np.where(labels == 0)[0]
            assert len(np.intersect1d(fg_inds, bg_inds)) == 0

            # subsample positive anchors
            cur_fg = len(fg_inds)
            if cur_fg > self._num_fg:
                disable_inds = np.random.choice(fg_inds, size=(cur_fg - self._num_fg), replace=False)
                labels[disable_inds] = -1

            # subsample negative anchors
            cur_bg = len(bg_inds)
            max_neg = self._num_batch - min(self._num_fg, cur_fg)
            if cur_bg > max_neg:
                disable_inds = np.random.choice(bg_inds, size=(cur_bg - max_neg), replace=False)
                labels[disable_inds] = -1

            # assign to argmax overlap
            fg_inds = np.where(labels == 1)[0]
            argmax_overlaps = overlaps.argmax(axis=1)
            bbox_targets[fg_inds, :] = bbox_transform(anchors[fg_inds, :], gt_boxes[argmax_overlaps[fg_inds], :],
                                                      box_stds=(1.0, 1.0, 1.0, 1.0))

            # only fg anchors has bbox_targets
            bbox_weights[fg_inds, :] = 1
        else:
            # randomly draw bg anchors
            bg_inds = np.random.choice(np.arange(num_valid), size=self._num_batch, replace=False)
            labels[bg_inds] = 0

        all_labels = np.ones((num_anchors,), dtype=np.float32) * -1
        all_labels[inds_inside] = labels
        all_bbox_targets = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_targets[inds_inside, :] = bbox_targets
        all_bbox_weights = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_weights[inds_inside, :] = bbox_weights

        return all_labels, all_bbox_targets, all_bbox_weights
Esempio n. 5
0
    def assign(self, anchors, gt_boxes, im_height, im_width):
        num_anchors = anchors.shape[0]

        # filter out padded gt_boxes
        valid_labels = np.where(gt_boxes[:, -1] > 0)[0]
        gt_boxes = gt_boxes[valid_labels]

        # filter out anchors outside the region
        inds_inside = np.where(
            (anchors[:, 0] >= -self._allowed_border)
            & (anchors[:, 2] < im_width + self._allowed_border)
            & (anchors[:, 1] >= -self._allowed_border)
            & (anchors[:, 3] < im_height + self._allowed_border))[0]
        anchors = anchors[inds_inside, :]
        num_valid = len(inds_inside)

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.ones((num_valid, ), dtype=np.float32) * -1
        bbox_targets = np.zeros((num_valid, 4), dtype=np.float32)
        bbox_weights = np.zeros((num_valid, 4), dtype=np.float32)

        # sample for positive labels
        if gt_boxes.size > 0:
            # overlap between the anchors and the gt boxes
            # overlaps (ex, gt)
            overlaps = bbox_overlaps(anchors.astype(np.float),
                                     gt_boxes.astype(np.float))
            gt_max_overlaps = overlaps.max(axis=0)

            # fg anchors: anchor with highest overlap for each gt; or overlap > iou thresh
            fg_inds = np.where((overlaps >= self._fg_overlap)
                               | (overlaps == gt_max_overlaps))[0]

            # subsample to num_fg
            if len(fg_inds) > self._num_fg:
                fg_inds = np.random.choice(fg_inds,
                                           size=self._num_fg,
                                           replace=False)

            # bg anchor: anchor with overlap < iou thresh but not highest overlap for some gt
            bg_inds = np.where((overlaps < self._bg_overlap)
                               & (overlaps < gt_max_overlaps))[0]

            if len(bg_inds) > self._num_batch - len(fg_inds):
                bg_inds = np.random.choice(bg_inds,
                                           size=self._num_batch - len(fg_inds),
                                           replace=False)

            # assign label
            labels[fg_inds] = 1
            labels[bg_inds] = 0

            # assign to argmax overlap
            argmax_overlaps = overlaps.argmax(axis=1)
            bbox_targets[fg_inds, :] = bbox_transform(
                anchors[fg_inds, :],
                gt_boxes[argmax_overlaps[fg_inds], :],
                box_stds=(1.0, 1.0, 1.0, 1.0))

            # only fg anchors has bbox_targets
            bbox_weights[fg_inds, :] = 1
        else:
            # randomly draw bg anchors
            bg_inds = np.random.choice(np.arange(num_valid),
                                       size=self._num_batch,
                                       replace=False)
            labels[bg_inds] = 0

        all_labels = np.ones((num_anchors, ), dtype=np.float32) * -1
        all_labels[inds_inside] = labels
        all_bbox_targets = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_targets[inds_inside, :] = bbox_targets
        all_bbox_weights = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_weights[inds_inside, :] = bbox_weights

        return all_labels, all_bbox_targets, all_bbox_weights
Esempio n. 6
0
    def assign(self, anchors, gt_boxes, im_height, im_width):
        num_anchors = anchors.shape[0]
        #print("gt_boxes=",gt_boxes)
        # filter out padded gt_boxes
        valid_labels = np.where(gt_boxes[:, -1] > 0)[0]  #判断gt_boxes是否是目标
        #print("valid_labels=",valid_labels)
        gt_boxes = gt_boxes[valid_labels]  #得到目标gt_boxes的索引
        #print("gt_boxes2=", gt_boxes)

        # filter out anchors outside the region  #过滤超出边界的anchor
        inds_inside = np.where(
            (anchors[:, 0] >= -self._allowed_border)
            & (anchors[:, 2] < im_width + self._allowed_border)
            & (anchors[:, 1] >= -self._allowed_border)
            & (anchors[:, 3] < im_height + self._allowed_border))[0]
        anchors = anchors[inds_inside, :]
        num_valid = len(inds_inside)
        #print('num_valid=',num_valid)

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.ones((num_valid, ), dtype=np.float32) * -1
        bbox_targets = np.zeros((num_valid, 4), dtype=np.float32)
        bbox_weights = np.zeros((num_valid, 4), dtype=np.float32)

        # sample for positive labels
        if gt_boxes.size > 0:
            # overlap between the anchors and the gt boxes
            # overlaps (ex, gt)
            #print('anchor=',anchors)
            #print('anchor_gt_boxes=', gt_boxes)####问题就在这,不带标签

            gt_boxes_rec = np.zeros((gt_boxes.shape[0], 4), dtype=np.float32)

            gt_boxes_rec[:, 0] = np.min(gt_boxes[:, 0:8:2])  # x_min
            gt_boxes_rec[:, 1] = np.min(gt_boxes[:, 1:8:2])  # y_min
            gt_boxes_rec[:, 2] = np.max(gt_boxes[:, 0:8:2])  # x_max
            gt_boxes_rec[:, 3] = np.max(gt_boxes[:, 1:8:2])  # y_max
            overlaps = bbox_overlaps(anchors.astype(np.float),
                                     gt_boxes_rec.astype(np.float))

            # fg anchors: anchor with highest overlap for each gt
            gt_max_overlaps = overlaps.max(axis=0)
            #print("gt_max_overlaps=",gt_max_overlaps)
            argmax_inds = np.where(overlaps == gt_max_overlaps)[0]
            labels[argmax_inds] = 1

            ################################问题就在这里###########################################################
            # fg anchors: anchor with overlap > iou thresh
            max_overlaps = overlaps.max(axis=1)
            #print('max_overlaps=',max_overlaps)
            # bg anchors: anchor with overlap < iou thresh

            labels[max_overlaps < self._bg_overlap] = 0
            #print("labels_0=", labels.shape)
            labels[max_overlaps >= self._fg_overlap] = 1
            #print("labels_1=",labels.shape)

            # sanity check
            fg_inds = np.where(labels == 1)[0]
            #print(" fg_inds=", fg_inds.shape)
            bg_inds = np.where(labels == 0)[0]
            #print("bg_inds=",bg_inds.shape)
            assert len(np.intersect1d(fg_inds, bg_inds)) == 0

            # subsample positive anchors
            cur_fg = len(fg_inds)
            if cur_fg > self._num_fg:
                disable_inds = np.random.choice(fg_inds,
                                                size=(cur_fg - self._num_fg),
                                                replace=False)
                labels[disable_inds] = -1

            # subsample negative anchors
            cur_bg = len(bg_inds)
            max_neg = self._num_batch - min(self._num_fg, cur_fg)
            #print("max_neg=",max_neg)
            if cur_bg > max_neg:
                disable_inds = np.random.choice(bg_inds,
                                                size=(cur_bg - max_neg),
                                                replace=False)
                labels[disable_inds] = -1

                # assign to argmax overlap
                fg_inds = np.where(labels == 1)[0]
                #print(" fg_inds=",fg_inds)
                argmax_overlaps = overlaps.argmax(axis=1)
                #print("anchors[fg_inds, :]=",anchors[fg_inds, :])
                #print("gt_boxes[argmax_overlaps[fg_inds], :]=",gt_boxes[argmax_overlaps[fg_inds], :])
                bbox_targets[fg_inds, :] = bbox_transform(
                    anchors[fg_inds, :],
                    gt_boxes_rec[argmax_overlaps[fg_inds], :],
                    box_stds=(1.0, 1.0, 1.0, 1.0))
                # only fg anchors has bbox_targets
                bbox_weights[fg_inds, :] = 1
                ###前面和tensorflow都一样,但是缺少_unmap函数
            else:
                # randomly draw bg anchors
                bg_inds = np.random.choice(np.arange(num_valid),
                                           size=self._num_batch,
                                           replace=False)
                labels[bg_inds] = 0

            all_labels = np.ones((num_anchors, ), dtype=np.float32) * -1
            all_labels[inds_inside] = labels
            all_bbox_targets = np.zeros((num_anchors, 4), dtype=np.float32)
            all_bbox_targets[inds_inside, :] = bbox_targets
            all_bbox_weights = np.zeros((num_anchors, 4), dtype=np.float32)
            all_bbox_weights[inds_inside, :] = bbox_weights

            return all_labels, all_bbox_targets, all_bbox_weights
Esempio n. 7
0
    def assign(self, anchors, gt_boxes, im_height, im_width):
        num_anchors = anchors.shape[0]

        # filter out padded gt_boxes
        valid_labels = np.where(gt_boxes[:, -1] > 0)[0]
        gt_boxes = gt_boxes[valid_labels]

        # filter out anchors outside the region
        inds_inside = np.where((anchors[:, 0] >= -self._allowed_border) &
                               (anchors[:, 2] < im_width + self._allowed_border) &
                               (anchors[:, 1] >= -self._allowed_border) &
                               (anchors[:, 3] < im_height + self._allowed_border))[0]
        anchors = anchors[inds_inside, :]
        num_valid = len(inds_inside)

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.ones((num_valid,), dtype=np.float32) * -1
        bbox_targets = np.zeros((num_valid, 4), dtype=np.float32)
        bbox_weights = np.zeros((num_valid, 4), dtype=np.float32)

        # sample for positive labels
        if gt_boxes.size > 0:
            # overlap between the anchors and the gt boxes
            # overlaps (ex, gt)
            overlaps = bbox_overlaps(anchors.astype(np.float), gt_boxes.astype(np.float))
            gt_max_overlaps = overlaps.max(axis=0)

            # fg anchors: anchor with highest overlap for each gt; or overlap > iou thresh
            fg_inds = np.where((overlaps >= self._fg_overlap) | (overlaps == gt_max_overlaps))[0]

            # subsample to num_fg
            if len(fg_inds) > self._num_fg:
                fg_inds = np.random.choice(fg_inds, size=self._num_fg, replace=False)

            # bg anchor: anchor with overlap < iou thresh but not highest overlap for some gt
            bg_inds = np.where((overlaps < self._bg_overlap) & (overlaps < gt_max_overlaps))[0]

            if len(bg_inds) > self._num_batch - len(fg_inds):
                bg_inds = np.random.choice(bg_inds, size=self._num_batch - len(fg_inds), replace=False)

            # assign label
            labels[fg_inds] = 1
            labels[bg_inds] = 0

            # assign to argmax overlap
            argmax_overlaps = overlaps.argmax(axis=1)
            bbox_targets[fg_inds, :] = bbox_transform(anchors[fg_inds, :], gt_boxes[argmax_overlaps[fg_inds], :],
                                                      box_stds=(1.0, 1.0, 1.0, 1.0))

            # only fg anchors has bbox_targets
            bbox_weights[fg_inds, :] = 1
        else:
            # randomly draw bg anchors
            bg_inds = np.random.choice(np.arange(num_valid), size=self._num_batch, replace=False)
            labels[bg_inds] = 0

        all_labels = np.ones((num_anchors,), dtype=np.float32) * -1
        all_labels[inds_inside] = labels
        all_bbox_targets = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_targets[inds_inside, :] = bbox_targets
        all_bbox_weights = np.zeros((num_anchors, 4), dtype=np.float32)
        all_bbox_weights[inds_inside, :] = bbox_weights

        return all_labels, all_bbox_targets, all_bbox_weights