def load_test(filename, short, max_size, mean, std): # read and transform image im_orig = imdecode(filename) im, im_scale = resize(im_orig, short, max_size) height, width = im.shape[:2] im_info = mx.nd.array([height, width, im_scale]) # transform into tensor and normalize im_tensor = transform(im, mean, std) # for 1-batch inference purpose, cannot use batchify (or nd.stack) to expand dims im_tensor = mx.nd.array(im_tensor).expand_dims(0) im_info = mx.nd.array(im_info).expand_dims(0) # transform cv2 BRG image to RGB for matplotlib im_orig = im_orig[:, :, (2, 1, 0)] return im_tensor, im_info, im_orig