Esempio n. 1
0
def test_tensorize_2d_1_mapping():

    DIM = 2

    M = Mapping('Map', DIM)

    domain = Domain('Omega', dim=DIM)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = ScalarFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain, expr)
    # ...
    #    a = BilinearForm((u,v), u*v)
    #    a = BilinearForm((u,v), mu*u*v + dot(grad(u),grad(v)))
    a = BilinearForm((u, v), int_0(dot(grad(u), grad(v))))
    #    a = BilinearForm((u,v), dx(u)*v)
    #    a = BilinearForm((u,v), laplace(u)*laplace(v))

    expr = TensorExpr(a, mapping=M)
    print(expr)
Esempio n. 2
0
def test_tensorize_2d_2():

    domain = Domain('Omega', dim=2)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain , expr)
    # ...
#    a = BilinearForm((u,v), dot(u,v))
    a = BilinearForm((u,v), int_0(curl(u)*curl(v) + div(u)*div(v)))

    expr = TensorExpr(a, domain=domain)
    print(expr)
Esempio n. 3
0
def test_tensorize_2d_3():

    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    u, v = elements_of(V, names='u,v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    expr = integral(domain, dot(b, grad(v)) * dot(b, grad(u)))
    a = BilinearForm((u, v), expr)

    print(TensorExpr(a))
    print('')
Esempio n. 4
0
def test_tensorize_2d_2_mapping():

    DIM = 2
    M = Mapping('M', DIM)
    domain = Domain('Omega', dim=DIM)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    c = Constant('c')

    int_0 = lambda expr: integral(domain, expr)

    a = BilinearForm((u, v), int_0(c * div(v) * div(u) + curl(v) * curl(u)))
    expr = TensorExpr(a, mapping=M)
    print(expr)
Esempio n. 5
0
def test_tensorize_2d_2():

    domain = Domain('Omega', dim=2)
    B1 = Boundary(r'\Gamma_1', domain)

    x, y = domain.coordinates

    kappa = Constant('kappa', is_real=True)
    mu = Constant('mu', is_real=True)

    V = VectorFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain, expr)
    # ...
    #    a = BilinearForm((u,v), dot(u,v))
    a = BilinearForm((u, v), int_0(curl(u) * curl(v) + div(u) * div(v)))

    expr = TensorExpr(a)
    print(expr)
Esempio n. 6
0
def test_tensorize_2d_1():

    domain = Domain('Omega', dim=2)

    mu    = Constant('mu'   , is_real=True)

    V = ScalarFunctionSpace('V', domain)
    u, v = elements_of(V, names='u, v')

    int_0 = lambda expr: integral(domain , expr)

    # ...
#    a = BilinearForm((u,v), u*v)
    a = BilinearForm((u,v), int_0(mu*u*v + dot(grad(u),grad(v))))
#    a = BilinearForm((u,v), dot(grad(u),grad(v)))
#    a = BilinearForm((u,v), dx(u)*v)
#    a = BilinearForm((u,v), laplace(u)*laplace(v))

    expr = TensorExpr(a, domain=domain)
    print(expr)