Esempio n. 1
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)

    U = VectorFunctionSpace('U', domain)
    W = ScalarFunctionSpace('W', domain)

    # Test functions
    v = element_of(U, name='v')
    phi = element_of(W, name='phi')
    q = element_of(W, name='q')

    # Steady-state fields
    U_0 = element_of(U, name='U_0')
    Rho_0 = element_of(W, name='Rho_0')
    P_0 = element_of(W, name='P_0')

    # Trial functions (displacements from steady-state)
    d_u = element_of(U, name='d_u')
    d_rho = element_of(W, name='d_rho')
    d_p = element_of(W, name='d_p')

    # Shortcut
    int_0 = lambda expr: integral(domain, expr)

    # The Euler equations are a system of three non-linear equations; for each of
    # them we create a linear form in the test functions (phi, v, q) respectively.
    e1 = div(Rho_0 * U_0)
    l1 = LinearForm(phi, int_0(e1 * phi))

    e2 = Rho_0 * convect(U_0, U_0) + grad(P_0)
    l2 = LinearForm(v, int_0(dot(e2, v)))

    e3 = div(P_0 * U_0)
    l3 = LinearForm(q, int_0(e3 * q))
    # ...

    # Linearize l1, l2 and l3 separately
    a1 = linearize(l1, fields=[Rho_0, U_0], trials=[d_rho, d_u])
    a2 = linearize(l2, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])
    a3 = linearize(l3, fields=[U_0, P_0], trials=[d_u, d_p])

    # Check individual bilinear forms
    d_e1 = div(U_0 * d_rho + Rho_0 * d_u)
    d_e2 = d_rho * convect(U_0, U_0) + \
           Rho_0 * convect(d_u, U_0) + \
           Rho_0 * convect(U_0, d_u) + grad(d_p)
    d_e3 = div(d_p * U_0 + P_0 * d_u)

    assert a1([d_rho, d_u], phi) == int_0(d_e1 * phi)
    assert a2([d_rho, d_u, d_p], v) == int_0(dot(d_e2, v))
    assert a3([d_u, d_p], q) == int_0(d_e3 * q)

    # Linearize linear form of system: l = l1 + l2 + l3
    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p])

    # Check composite linear form
    assert a([d_rho, d_u, d_p], [phi, v, q]) == \
            int_0(d_e1 * phi + dot(d_e2, v) + d_e3 * q)
Esempio n. 2
0
def test_linearize_form_2d_4():
    domain = Domain('Omega', dim=2)
    Gamma_N = Boundary(r'\Gamma_N', domain)

    x, y = domain.coordinates

    V = ScalarFunctionSpace('V', domain)

    v = element_of(V, name='v')
    u = element_of(V, name='u')
    du = element_of(V, name='du')

    int_0 = lambda expr: integral(domain, expr)
    int_1 = lambda expr: integral(Gamma_N, expr)

    #    g = Matrix((cos(pi*x)*sin(pi*y),
    #              sin(pi*x)*cos(pi*y)))

    expr = dot(grad(v), grad(u)) - 4. * exp(-u) * v  # + v*trace_1(g, Gamma_N)

    l = LinearForm(v, int_0(expr))

    # linearising l around u, using du
    a = linearize(l, u, trials=du)

    assert a(du, v) == int_0(dot(grad(v), grad(du)) + 4. * exp(-u) * du * v)
Esempio n. 3
0
def test_linearize_form_2d_2():
    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)

    v, F, u = elements_of(V, names='v, F, u')

    int_0 = lambda expr: integral(domain, expr)

    # ...
    l1 = LinearForm(v, int_0(F**2 * v))
    l = LinearForm(v, l1(v))

    a = linearize(l, F, trials=u)

    expected = linearize(l1, F, trials=u)
    assert a == expected
Esempio n. 4
0
def test_linearize_form_2d_3():
    """steady Euler equation."""
    domain = Domain('Omega', dim=2)
    x, y = domain.coordinates

    U = VectorFunctionSpace('U', domain)
    W = FunctionSpace('W', domain)

    v = VectorTestFunction(U, name='v')
    phi = TestFunction(W, name='phi')
    q = TestFunction(W, name='q')

    U_0 = VectorField(U, name='U_0')
    Rho_0 = Field(W, name='Rho_0')
    P_0 = Field(W, name='P_0')

    # ...
    expr = div(Rho_0 * U_0) * phi
    l1 = LinearForm(phi, expr)

    expr = Rho_0 * dot(convect(U_0, grad(U_0)), v) + dot(grad(P_0), v)
    l2 = LinearForm(v, expr)

    expr = dot(U_0, grad(P_0)) * q + P_0 * div(U_0) * q
    l3 = LinearForm(q, expr)
    # ...

    a1 = linearize(l1, [Rho_0, U_0], trials=['d_rho', 'd_u'])
    print(a1)
    print('')

    a2 = linearize(l2, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a2)
    print('')

    a3 = linearize(l3, [P_0, U_0], trials=['d_p', 'd_u'])
    print(a3)
    print('')

    l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q))
    a = linearize(l, [Rho_0, U_0, P_0], trials=['d_rho', 'd_u', 'd_p'])
    print(a)

    export(a, 'steady_euler.png')
Esempio n. 5
0
def test_linearize_expr_2d_1():
    domain = Domain('Omega', dim=2)
    x,y = domain.coordinates

    V1 = ScalarFunctionSpace('V1', domain)
    W1 = VectorFunctionSpace('W1', domain)

    v1 = element_of(V1, name='v1')
    w1 = element_of(W1, name='w1')

    alpha = Constant('alpha')

    F = element_of(V1, name='F')
    G = element_of(W1, 'G')


    # ...
    l = LinearExpr(v1, F**2*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, dot(grad(F), grad(F))*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, exp(-F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, cos(F**2)*v1)
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(v1, F**2*dot(grad(F), grad(v1)))
    a = linearize(l, F, trials='u1')
    print(a)
    # ...

    # ...
    l = LinearExpr(w1, dot(rot(G), grad(G))*w1)
    a = linearize(l, G, trials='u1')
    print(a)
Esempio n. 6
0
def test_linearize_expr_2d_2():
    domain = Domain('Omega', dim=2)
    x, y = domain.coordinates

    V1 = ScalarFunctionSpace('V1', domain)

    v1 = element_of(V1, name='v1')

    alpha = Constant('alpha')

    F = element_of(V1, name='F')
    G = element_of(V1, name='G')

    # ...
    l1 = LinearExpr(v1, F**2 * v1)
    l = LinearExpr(v1, l1(v1))

    a = linearize(l, F, trials='u1')
    print(a)

    expected = linearize(l1, F, trials='u1')
    assert (linearize(l, F, trials='u1') == expected)
Esempio n. 7
0
def test_linearize_form_2d_1():
    domain = Domain('Omega', dim=2)

    V = ScalarFunctionSpace('V', domain)
    W = VectorFunctionSpace('W', domain)

    v, F, u = elements_of(V, names='v, F, u')
    w, G, m = elements_of(W, names='w, G, m')

    int_0 = lambda expr: integral(domain, expr)

    # ...
    l = LinearForm(v, int_0(F**2 * v))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(2 * F * u * v)
    # ...

    # ...
    l = LinearForm(v, int_0(dot(grad(F), grad(F)) * v))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(2 * dot(grad(F), grad(u)) * v)
    # ...

    # ...
    l = LinearForm(v, int_0(exp(-F) * v))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(-exp(-F) * u * v)
    # ...

    # ...
    l = LinearForm(v, int_0(cos(F) * v))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(-sin(F) * u * v)
    # ...

    # ...
    l = LinearForm(v, int_0(cos(F**2) * v))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(-2 * F * sin(F**2) * u * v)
    # ...

    # ...
    l = LinearForm(v, int_0(F**2 * dot(grad(F), grad(v))))
    a = linearize(l, F, trials=u)
    assert a(u, v) == int_0(2 * F * u * dot(grad(F), grad(v)) +
                            F**2 * dot(grad(u), grad(v)))
    # ...

    # ...
    l = LinearForm(w, int_0(dot(rot(G), grad(G)) * w))
    a = linearize(l, G, trials=m)
    assert a(m, w) == int_0((dot(rot(m), grad(G)) + dot(rot(G), grad(m))) * w)