Esempio n. 1
0
def refine_MatMul(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> expr = X * X.T
    >>> print(expr)
    X*X.T
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(expr))
    I
    """
    newargs = []
    exprargs = []

    for args in expr.args:
        if args.is_Matrix:
            exprargs.append(args)
        else:
            newargs.append(args)

    last = exprargs[0]
    for arg in exprargs[1:]:
        if arg == last.T and ask(Q.orthogonal(arg), assumptions):
            last = Identity(arg.shape[0])
        elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
            last = Identity(arg.shape[0])
        else:
            newargs.append(last)
            last = arg
    newargs.append(last)

    return MatMul(*newargs)
Esempio n. 2
0
def test_is_literal():
    assert is_literal(True) is True
    assert is_literal(False) is True
    assert is_literal(A) is True
    assert is_literal(~A) is True
    assert is_literal(Or(A, B)) is False
    assert is_literal(Q.zero(A)) is True
    assert is_literal(Not(Q.zero(A))) is True
    assert is_literal(Or(A, B)) is False
    assert is_literal(And(Q.zero(A), Q.zero(B))) is False
Esempio n. 3
0
def test_global():
    """Test for global assumptions"""
    global_assumptions.add(Q.is_true(x > 0))
    assert Q.is_true(x > 0) in global_assumptions
    global_assumptions.remove(Q.is_true(x > 0))
    assert not Q.is_true(x > 0) in global_assumptions
    # same with multiple of assumptions
    global_assumptions.add(Q.is_true(x > 0), Q.is_true(y > 0))
    assert Q.is_true(x > 0) in global_assumptions
    assert Q.is_true(y > 0) in global_assumptions
    global_assumptions.clear()
    assert not Q.is_true(x > 0) in global_assumptions
    assert not Q.is_true(y > 0) in global_assumptions
Esempio n. 4
0
def test_binary_symbols():
    assert ITE(x < 1, y, z).binary_symbols == set((y, z))
    for f in (Eq, Ne):
        assert f(x, 1).binary_symbols == set()
        assert f(x, True).binary_symbols == set([x])
        assert f(x, False).binary_symbols == set([x])
    assert S.true.binary_symbols == set()
    assert S.false.binary_symbols == set()
    assert x.binary_symbols == set([x])
    assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == set([x, y])
    assert Q.prime(x).binary_symbols == set()
    assert Q.is_true(x < 1).binary_symbols == set()
    assert Q.is_true(x).binary_symbols == set([x])
    assert Q.is_true(Eq(x, True)).binary_symbols == set([x])
    assert Q.prime(x).binary_symbols == set()
Esempio n. 5
0
def test_binary_symbols():
    assert ITE(x < 1, y, z).binary_symbols == set((y, z))
    for f in (Eq, Ne):
        assert f(x, 1).binary_symbols == set()
        assert f(x, True).binary_symbols == set([x])
        assert f(x, False).binary_symbols == set([x])
    assert S.true.binary_symbols == set()
    assert S.false.binary_symbols == set()
    assert x.binary_symbols == set([x])
    assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == set([x, y])
    assert Q.prime(x).binary_symbols == set()
    assert Q.is_true(x < 1).binary_symbols == set()
    assert Q.is_true(x).binary_symbols == set([x])
    assert Q.is_true(Eq(x, True)).binary_symbols == set([x])
    assert Q.prime(x).binary_symbols == set()
Esempio n. 6
0
def test_binary_symbols():
    assert ITE(x < 1, y, z).binary_symbols == {y, z}
    for f in (Eq, Ne):
        assert f(x, 1).binary_symbols == set()
        assert f(x, True).binary_symbols == {x}
        assert f(x, False).binary_symbols == {x}
    assert S.true.binary_symbols == set()
    assert S.false.binary_symbols == set()
    assert x.binary_symbols == {x}
    assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == {x, y}
    assert Q.prime(x).binary_symbols == set()
    assert Q.lt(x, 1).binary_symbols == set()
    assert Q.is_true(x).binary_symbols == {x}
    assert Q.eq(x, True).binary_symbols == {x}
    assert Q.prime(x).binary_symbols == set()
Esempio n. 7
0
def test_dft():
    n, i, j = symbols('n i j')
    assert DFT(4).shape == (4, 4)
    assert ask(Q.unitary(DFT(4)))
    assert Abs(simplify(det(Matrix(DFT(4))))) == 1
    assert DFT(n) * IDFT(n) == Identity(n)
    assert DFT(n)[i, j] == exp(-2 * S.Pi * I / n)**(i * j) / sqrt(n)
Esempio n. 8
0
def test_is_infinite():
    x = Symbol('x', infinite=True)
    y = Symbol('y', infinite=False)
    z = Symbol('z')
    assert is_infinite(x)
    assert not is_infinite(y)
    assert is_infinite(z) is None
    assert is_infinite(z, Q.infinite(z))
Esempio n. 9
0
def test_is_extended_real():
    x = Symbol('x', extended_real=True)
    y = Symbol('y', extended_real=False)
    z = Symbol('z')
    assert is_extended_real(x)
    assert not is_extended_real(y)
    assert is_extended_real(z) is None
    assert is_extended_real(z, Q.extended_real(z))
Esempio n. 10
0
def test_refine():
    # relational
    assert not refine(x < 0, ~(x < 0))
    assert refine(x < 0, (x < 0))
    assert refine(x < 0, (0 > x)) is S.true
    assert refine(x < 0, (y < 0)) == (x < 0)
    assert not refine(x <= 0, ~(x <= 0))
    assert refine(x <= 0, (x <= 0))
    assert refine(x <= 0, (0 >= x)) is S.true
    assert refine(x <= 0, (y <= 0)) == (x <= 0)
    assert not refine(x > 0, ~(x > 0))
    assert refine(x > 0, (x > 0))
    assert refine(x > 0, (0 < x)) is S.true
    assert refine(x > 0, (y > 0)) == (x > 0)
    assert not refine(x >= 0, ~(x >= 0))
    assert refine(x >= 0, (x >= 0))
    assert refine(x >= 0, (0 <= x)) is S.true
    assert refine(x >= 0, (y >= 0)) == (x >= 0)
    assert not refine(Eq(x, 0), ~(Eq(x, 0)))
    assert refine(Eq(x, 0), (Eq(x, 0)))
    assert refine(Eq(x, 0), (Eq(0, x))) is S.true
    assert refine(Eq(x, 0), (Eq(y, 0))) == Eq(x, 0)
    assert not refine(Ne(x, 0), ~(Ne(x, 0)))
    assert refine(Ne(x, 0), (Ne(0, x))) is S.true
    assert refine(Ne(x, 0), (Ne(x, 0)))
    assert refine(Ne(x, 0), (Ne(y, 0))) == (Ne(x, 0))

    # boolean functions
    assert refine(And(x > 0, y > 0), (x > 0)) == (y > 0)
    assert refine(And(x > 0, y > 0), (x > 0) & (y > 0)) is S.true

    # predicates
    assert refine(Q.positive(x), Q.positive(x)) is S.true
    assert refine(Q.positive(x), Q.negative(x)) is S.false
    assert refine(Q.positive(x), Q.real(x)) == Q.positive(x)
Esempio n. 11
0
def refine_Inverse(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.I
    X^-1
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(X.I))
    X.T
    """
    if ask(Q.orthogonal(expr), assumptions):
        return expr.arg.T
    elif ask(Q.unitary(expr), assumptions):
        return expr.arg.conjugate()
    elif ask(Q.singular(expr), assumptions):
        raise ValueError("Inverse of singular matrix %s" % expr.arg)

    return expr
Esempio n. 12
0
def refine_Determinant(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine, det
    >>> X = MatrixSymbol('X', 2, 2)
    >>> det(X)
    Determinant(X)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(det(X)))
    1
    """
    if ask(Q.orthogonal(expr.arg), assumptions):
        return S.One
    elif ask(Q.singular(expr.arg), assumptions):
        return S.Zero
    elif ask(Q.unit_triangular(expr.arg), assumptions):
        return S.One

    return expr
Esempio n. 13
0
def refine_Inverse(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.I
    X**(-1)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(X.I))
    X.T
    """
    if ask(Q.orthogonal(expr), assumptions):
        return expr.arg.T
    elif ask(Q.unitary(expr), assumptions):
        return expr.arg.conjugate()
    elif ask(Q.singular(expr), assumptions):
        raise ValueError("Inverse of singular matrix %s" % expr.arg)

    return expr
Esempio n. 14
0
def refine_Determinant(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine, det
    >>> X = MatrixSymbol('X', 2, 2)
    >>> det(X)
    Determinant(X)
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(det(X)))
    1
    """
    if ask(Q.orthogonal(expr.arg), assumptions):
        return S.One
    elif ask(Q.singular(expr.arg), assumptions):
        return S.Zero
    elif ask(Q.unit_triangular(expr.arg), assumptions):
        return S.One

    return expr
Esempio n. 15
0
 def _eval_power(self, exp):
     # exp = -1, 0, 1 are already handled at this stage
     if self._is_1x1() == True:
         return Identity(1)
     if (exp < 0) == True:
         raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
     if ask(Q.integer(exp)):
         return self.shape[0]**(exp - 1) * OneMatrix(*self.shape)
     return super(OneMatrix, self)._eval_power(exp)
Esempio n. 16
0
def test_BlockMatrix_Determinant():
    A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
    X = BlockMatrix([[A, B], [C, D]])
    from sympy.assumptions.ask import Q
    from sympy.assumptions.assume import assuming
    with assuming(Q.invertible(A)):
        assert det(X) == det(A) * det(X.schur('A'))

    assert isinstance(det(X), Expr)
    assert det(BlockMatrix([A])) == det(A)
    assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
Esempio n. 17
0
def test_call():
    x, y = symbols('x y')
    # See the long history of this in issues 5026 and 5105.

    raises(TypeError, lambda: sin(x)({x: 1, sin(x): 2}))
    raises(TypeError, lambda: sin(x)(1))

    # No effect as there are no callables
    assert sin(x).rcall(1) == sin(x)
    assert (1 + sin(x)).rcall(1) == 1 + sin(x)

    # Effect in the pressence of callables
    l = Lambda(x, 2 * x)
    assert (l + x).rcall(y) == 2 * y + x
    assert (x**l).rcall(2) == x**4
    # TODO UndefinedFunction does not subclass Expr
    #f = Function('f')
    #assert (2*f)(x) == 2*f(x)

    assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x)
Esempio n. 18
0
def test_invertible_BlockMatrix():
    assert ask(Q.invertible(BlockMatrix([Identity(3)]))) == True
    assert ask(Q.invertible(BlockMatrix([ZeroMatrix(3, 3)]))) == False

    X = Matrix([[1, 2, 3], [3, 5, 4]])
    Y = Matrix([[4, 2, 7], [2, 3, 5]])
    # non-invertible A block
    assert ask(
        Q.invertible(
            BlockMatrix([
                [Matrix.ones(3, 3), Y.T],
                [X, Matrix.eye(2)],
            ]))) == True
    # non-invertible B block
    assert ask(
        Q.invertible(
            BlockMatrix([
                [Y.T, Matrix.ones(3, 3)],
                [Matrix.eye(2), X],
            ]))) == True
    # non-invertible C block
    assert ask(
        Q.invertible(
            BlockMatrix([
                [X, Matrix.eye(2)],
                [Matrix.ones(3, 3), Y.T],
            ]))) == True
    # non-invertible D block
    assert ask(
        Q.invertible(
            BlockMatrix([
                [Matrix.eye(2), X],
                [Y.T, Matrix.ones(3, 3)],
            ]))) == True
Esempio n. 19
0
def test_is_ge_le():
    # test assumptions
    assert is_ge(x, S(0), Q.nonnegative(x)) is True
    assert is_ge(x, S(0), Q.negative(x)) is False

    # test registration
    class PowTest(Expr):
        def __new__(cls, base, exp):
            return Basic.__new__(cls, _sympify(base), _sympify(exp))

    @dispatch(PowTest, PowTest)
    def _eval_is_ge(lhs, rhs):
        if type(lhs) == PowTest and type(rhs) == PowTest:
            return fuzzy_and([
                is_ge(lhs.args[0], rhs.args[0]),
                is_ge(lhs.args[1], rhs.args[1])
            ])

    assert is_ge(PowTest(3, 9), PowTest(3, 2))
    assert is_gt(PowTest(3, 9), PowTest(3, 2))
    assert is_le(PowTest(3, 2), PowTest(3, 9))
    assert is_lt(PowTest(3, 2), PowTest(3, 9))
Esempio n. 20
0
def refine_Transpose(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.T
    X.T
    >>> with assuming(Q.symmetric(X)):
    ...     print(refine(X.T))
    X
    """
    if ask(Q.symmetric(expr), assumptions):
        return expr.arg

    return expr
Esempio n. 21
0
def refine_Transpose(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> X.T
    X.T
    >>> with assuming(Q.symmetric(X)):
    ...     print(refine(X.T))
    X
    """
    if ask(Q.symmetric(expr), assumptions):
        return expr.arg

    return expr
Esempio n. 22
0
def refine_MatMul(expr, assumptions):
    """
    >>> from sympy import MatrixSymbol, Q, assuming, refine
    >>> X = MatrixSymbol('X', 2, 2)
    >>> expr = X * X.T
    >>> print(expr)
    X*X'
    >>> with assuming(Q.orthogonal(X)):
    ...     print(refine(expr))
    I
    """
    newargs = []
    last = expr.args[0]
    for arg in expr.args[1:]:
        if arg == last.T and ask(Q.orthogonal(arg), assumptions):
            last = Identity(arg.shape[0])
        elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
            last = Identity(arg.shape[0])
        else:
            newargs.append(last)
            last = arg
    newargs.append(last)

    return MatMul(*newargs)
Esempio n. 23
0
    def _contains(self, other):
        from sympy.assumptions.ask import ask, Q
        if ask(Q.real(other)) is False:
            return False

        if self.left_open:
            expr = other > self.start
        else:
            expr = other >= self.start

        if self.right_open:
            expr = And(expr, other < self.end)
        else:
            expr = And(expr, other <= self.end)

        return expr
Esempio n. 24
0
    def _contains(self, other):
        from sympy.assumptions.ask import ask, Q
        if ask(Q.real(other)) is False:
            return False

        if self.left_open:
            expr = other > self.start
        else:
            expr = other >= self.start

        if self.right_open:
            expr = And(expr, other < self.end)
        else:
            expr = And(expr, other <= self.end)

        return expr
Esempio n. 25
0
def test_sign():
    x = Symbol('x', real = True)
    assert refine(sign(x), Q.positive(x)) == 1
    assert refine(sign(x), Q.negative(x)) == -1
    assert refine(sign(x), Q.zero(x)) == 0
    assert refine(sign(x), True) == sign(x)
    assert refine(sign(Abs(x)), Q.nonzero(x)) == 1

    x = Symbol('x', imaginary=True)
    assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit
    assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit
    assert refine(sign(x), True) == sign(x)

    x = Symbol('x', complex=True)
    assert refine(sign(x), Q.zero(x)) == 0
Esempio n. 26
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
def test_equal():
    """Test for equality"""
    x = symbols('x')
    assert Q.positive(x)  == Q.positive(x)
    assert Q.positive(x)  != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
def test_pretty():
    x = symbols('x')
    assert pretty(Q.positive(x)) == "Q.positive(x)"
Esempio n. 29
0
 def _contains(self, other):
     from sympy.assumptions.ask import ask, Q
     return (other >= self.inf and other <= self.sup and
             ask(Q.integer((self.start - other)/self.step)))
Esempio n. 30
0
 def _contains(self, other):
     from sympy.assumptions.ask import ask, Q
     if ask(Q.negative(other)) == False and ask(Q.integer(other)):
         return True
     return False
Esempio n. 31
0
def test_equal():
    """Test for equality"""
    assert Q.positive(x) == Q.positive(x)
    assert Q.positive(x) != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
Esempio n. 32
0
def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= set([fact])


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),
    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
    (Add, Implies(AllArgs(Q.real), Q.real)),
    #General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    (Mul, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Add, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational),
        Q.irrational))),
    (Mul, Implies(AllArgs(Q.rational), Q.rational)),
Esempio n. 33
0
def test_AppliedPredicate():
    sT(Q.even(Symbol('z')), "AppliedPredicate(Q.even, Symbol('z'))")
Esempio n. 34
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
    assert pretty(set([Q.positive, Q.integer])) == "set([Q.integer, Q.positive])"
Esempio n. 35
0
def test_arg():
    x = Symbol('x', complex = True)
    assert refine(arg(x), Q.positive(x)) == 0
    assert refine(arg(x), Q.negative(x)) == pi
Esempio n. 36
0
def test_pow1():
    assert refine((-1)**x, Q.even(x)) == 1
    assert refine((-1)**x, Q.odd(x)) == -1
    assert refine((-2)**x, Q.even(x)) == 2**x

    # nested powers
    assert refine(sqrt(x**2)) != Abs(x)
    assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
    assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
    assert refine(sqrt(x**2), Q.positive(x)) == x
    assert refine((x**3)**Rational(1, 3)) != x

    assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
    assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x

    assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
    assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)

    # powers of (-1)
    assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
    assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
    assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
    assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
    assert refine((-1)**(x + 3)) == (-1)**(x + 1)

    # continuation
    assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
    assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
    assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
Esempio n. 37
0
 def _contains(self, other):
     if ask(Q.negative(other)) == False and ask(Q.integer(other)):
         return True
     return False
Esempio n. 38
0
def test_composite_predicates():
    pred = Q.integer | ~Q.positive
    assert type(pred(x)) is Or
    assert pred(x) == Q.integer(x) | ~Q.positive(x)
Esempio n. 39
0
def test_composite_predicates():
    pred = Q.integer | ~Q.positive
    assert type(pred(x)) is Or
    assert pred(x) == Q.integer(x) | ~Q.positive(x)
Esempio n. 40
0
 def _contains(self, other):
     return (other >= self.inf and other <= self.sup and
             ask(Q.integer((self.start - other)/self.step)))
Esempio n. 41
0

def register_fact(klass, fact, registry=fact_registry):
    registry[klass] |= {fact}


for klass, fact in [
    (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))),
    (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))),
    (Add, Implies(AllArgs(Q.positive), Q.positive)),
    (Add, Implies(AllArgs(Q.negative), Q.negative)),
    (Mul, Implies(AllArgs(Q.positive), Q.positive)),
    (Mul, Implies(AllArgs(Q.commutative), Q.commutative)),
    (Mul, Implies(AllArgs(Q.real), Q.commutative)),

    (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) &
    Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))),
    (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))),

    # This one can still be made easier to read. I think we need basic pattern
    # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y))
    (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))),
    (Integer, CheckIsPrime(Q.prime)),
    # Implicitly assumes Mul has more than one arg
    # Would be AllArgs(Q.prime | Q.composite) except 1 is composite
    (Mul, Implies(AllArgs(Q.prime), ~Q.prime)),
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))),
    (Mul, Implies(AllArgs(Q.real), Q.real)),
Esempio n. 42
0
def test_refine():
    assert refine(C.T, Q.symmetric(C)) == C
Esempio n. 43
0
def test_equal():
    """Test for equality"""
    assert Q.positive(x)  == Q.positive(x)
    assert Q.positive(x)  != ~Q.positive(x)
    assert ~Q.positive(x) == ~Q.positive(x)
Esempio n. 44
0
def test_refine():
    assert refine(C * C.T * D, Q.orthogonal(C)).doit() == D

    kC = k * C
    assert refine(kC * C.T, Q.orthogonal(C)).doit() == k * Identity(n)
    assert refine(kC * kC.T, Q.orthogonal(C)).doit() == (k**2) * Identity(n)
Esempio n. 45
0
def test_re():
    assert refine(re(x), Q.real(x)) == x
    assert refine(re(x), Q.imaginary(x)) is S.Zero
    assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y
    assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x
    assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y
    assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0
    assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z
Esempio n. 46
0
def test_pretty():
    assert pretty(Q.positive(x)) == "Q.positive(x)"
    assert pretty(set([Q.positive,
                       Q.integer])) == "set([Q.integer, Q.positive])"
Esempio n. 47
0
def test_im():
    assert refine(im(x), Q.imaginary(x)) == -I*x
    assert refine(im(x), Q.real(x)) is S.Zero
    assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y
    assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y
    assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y
    assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0
    assert refine(im(1/x), Q.imaginary(x)) == -I/x
    assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y)
        & Q.imaginary(z)) == -I*x*y*z
Esempio n. 48
0
def test_is_eq():
    # test assumptions
    assert is_eq(x, y, Q.infinite(x) & Q.finite(y)) is False
    assert is_eq(
        x, y,
        Q.infinite(x) & Q.infinite(y) & Q.extended_real(x)
        & ~Q.extended_real(y)) is False
    assert is_eq(
        x, y,
        Q.infinite(x) & Q.infinite(y) & Q.extended_positive(x)
        & Q.extended_negative(y)) is False

    assert is_eq(x + I, y + I, Q.infinite(x) & Q.finite(y)) is False
    assert is_eq(1 + x * I, 1 + y * I, Q.infinite(x) & Q.finite(y)) is False

    assert is_eq(x, S(0), assumptions=Q.zero(x))
    assert is_eq(x, S(0), assumptions=~Q.zero(x)) is False
    assert is_eq(x, S(0), assumptions=Q.nonzero(x)) is False
    assert is_neq(x, S(0), assumptions=Q.zero(x)) is False
    assert is_neq(x, S(0), assumptions=~Q.zero(x))
    assert is_neq(x, S(0), assumptions=Q.nonzero(x))

    # test registration
    class PowTest(Expr):
        def __new__(cls, base, exp):
            return Basic.__new__(cls, _sympify(base), _sympify(exp))

    @dispatch(PowTest, PowTest)
    def _eval_is_eq(lhs, rhs):
        if type(lhs) == PowTest and type(rhs) == PowTest:
            return fuzzy_and([
                is_eq(lhs.args[0], rhs.args[0]),
                is_eq(lhs.args[1], rhs.args[1])
            ])

    assert is_eq(PowTest(3, 4), PowTest(3, 4))
    assert is_eq(PowTest(3, 4), _sympify(4)) is None
    assert is_neq(PowTest(3, 4), PowTest(3, 7))
Esempio n. 49
0
def test_complex():
    assert refine(re(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
        x/(x**2 + y**2)
    assert refine(im(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
        -y/(x**2 + y**2)
    assert refine(re((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
        & Q.real(z)) == w*y - x*z
    assert refine(im((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
        & Q.real(z)) == w*z + x*y
Esempio n. 50
0
def test_atan2():
    assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x)
    assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi
    assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi
    assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi
    assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2
    assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2
    assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan
Esempio n. 51
0
 def _contains(self, other):
     if ask(Q.positive(other)) and ask(Q.integer(other)):
         return True
     return False