Esempio n. 1
0
def refine_abs(expr, assumptions):
    """
    Handler for the absolute value.

    Examples
    ========

    >>> from sympy import Symbol, Q, refine, Abs
    >>> from sympy.assumptions.refine import refine_abs
    >>> from sympy.abc import x
    >>> refine_abs(Abs(x), Q.real(x))
    >>> refine_abs(Abs(x), Q.positive(x))
    x
    >>> refine_abs(Abs(x), Q.negative(x))
    -x

    """
    from sympy.core.logic import fuzzy_not

    arg = expr.args[0]
    if ask(Q.real(arg), assumptions) and fuzzy_not(ask(Q.negative(arg), assumptions)):
        # if it's nonnegative
        return arg
    if ask(Q.negative(arg), assumptions):
        return -arg
Esempio n. 2
0
def refine_atan2(expr, assumptions):
    """
    Handler for the atan2 function

    Examples
    ========

    >>> from sympy import Symbol, Q, refine, atan2
    >>> from sympy.assumptions.refine import refine_atan2
    >>> from sympy.abc import x, y
    >>> refine_atan2(atan2(y,x), Q.real(y) & Q.positive(x))
    atan(y/x)
    >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.negative(x))
    atan(y/x) - pi
    >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.negative(x))
    atan(y/x) + pi
    """
    from sympy.functions.elementary.complexes import atan
    from sympy.core import S
    y, x = expr.args
    if ask(Q.real(y) & Q.positive(x), assumptions):
        return atan(y / x)
    elif ask(Q.negative(y) & Q.negative(x), assumptions):
        return atan(y / x) - S.Pi
    elif ask(Q.positive(y) & Q.negative(x), assumptions):
        return atan(y / x) + S.Pi
    else:
        return expr
Esempio n. 3
0
def test_float_1():
    z = 1.0
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == True
    assert ask(Q.rational(z))         == True
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == True
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == True
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == True

    z = 7.2123
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == True
    assert ask(Q.real(z))             == True
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == True
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
Esempio n. 4
0
 def Pow(expr, assumptions):
     """
     Imaginary**integer -> Imaginary if integer % 2 == 1
     Imaginary**integer -> real if integer % 2 == 0
     Imaginary**Imaginary    -> ?
     Imaginary**Real         -> ?
     """
     if expr.is_number:
         return AskImaginaryHandler._number(expr, assumptions)
     if ask(Q.imaginary(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             if ask(Q.odd(expr.exp), assumptions):
                 return True
             elif ask(Q.even(expr.exp), assumptions):
                 return False
     elif ask(Q.real(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             if expr.exp.is_Rational and \
                ask(Q.even(expr.exp.q), assumptions):
                 return ask(Q.negative(expr.base),assumptions)
             elif ask(Q.integer(expr.exp), assumptions):
                 return False
             elif ask(Q.positive(expr.base), assumptions):
                 return False
             elif ask(Q.negative(expr.base), assumptions):
                 return True
Esempio n. 5
0
def test_refine():
    m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)],
                 [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]])
    m1 = m0.refine(Q.real(x) & Q.real(y))
    assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]])

    m1 = m0.refine(Q.positive(x) & Q.positive(y))
    assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]])

    m1 = m0.refine(Q.negative(x) & Q.negative(y))
    assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]])
Esempio n. 6
0
def test_I():
    I = S.ImaginaryUnit
    z = I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == True
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = 1 + I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = I*(1+I)
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
Esempio n. 7
0
def test_I():
    I = S.ImaginaryUnit
    z = I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == True
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = 1 + I
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False

    z = I*(1+I)
    assert ask(Q.commutative(z))      == True
    assert ask(Q.integer(z))          == False
    assert ask(Q.rational(z))         == False
    assert ask(Q.real(z))             == False
    assert ask(Q.complex(z))          == True
    assert ask(Q.irrational(z))       == False
    assert ask(Q.imaginary(z))        == False
    assert ask(Q.positive(z))         == False
    assert ask(Q.negative(z))         == False
    assert ask(Q.even(z))             == False
    assert ask(Q.odd(z))              == False
    assert ask(Q.bounded(z))          == True
    assert ask(Q.infinitesimal(z))    == False
    assert ask(Q.prime(z))            == False
    assert ask(Q.composite(z))        == False
Esempio n. 8
0
def test_extended_real():
    x = symbols('x')
    assert ask(Q.extended_real(x), Q.positive(x)) == True
    assert ask(Q.extended_real(-x), Q.positive(x)) == True
    assert ask(Q.extended_real(-x), Q.negative(x)) == True

    assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) == True
Esempio n. 9
0
 def Pow(expr, assumptions):
     """
     Unbounded ** NonZero -> Unbounded
     Bounded ** Bounded -> Bounded
     Abs()<=1 ** Positive -> Bounded
     Abs()>=1 ** Negative -> Bounded
     Otherwise unknown
     """
     base_bounded = ask(Q.bounded(expr.base), assumptions)
     exp_bounded = ask(Q.bounded(expr.exp), assumptions)
     if base_bounded is None and exp_bounded is None:  # Common Case
         return None
     if base_bounded is False and ask(Q.nonzero(expr.exp), assumptions):
         return False
     if base_bounded and exp_bounded:
         return True
     if (abs(expr.base) <= 1) is True and ask(Q.positive(expr.exp),
                                              assumptions):
         return True
     if (abs(expr.base) >= 1) is True and ask(Q.negative(expr.exp),
                                              assumptions):
         return True
     if (abs(expr.base) >= 1) is True and exp_bounded is False:
         return False
     return None
Esempio n. 10
0
def test_composite_proposition():
    from sympy.logic.boolalg import Equivalent, Implies
    x = symbols('x')
    assert ask(True) is True
    assert ask(~Q.negative(x), Q.positive(x)) is True
    assert ask(~Q.real(x), Q.commutative(x)) is None
    assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False
    assert ask(Q.negative(x) & Q.integer(x)) is None
    assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True
    assert ask(Q.real(x) | Q.integer(x)) is None
    assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False
    assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False
    assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None
    assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True
    assert ask(Equivalent(Q.integer(x), Q.even(x))) is None
    assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None
Esempio n. 11
0
def test_functions_in_assumptions():
    from sympy.logic.boolalg import Equivalent, Xor

    x = symbols("x")
    assert ask(x, Q.negative, Q.real(x) >> Q.positive(x)) is False
    assert ask(x, Q.negative, Equivalent(Q.real(x), Q.positive(x))) is False
    assert ask(x, Q.negative, Xor(Q.real(x), Q.negative(x))) is False
Esempio n. 12
0
def test_extended_real():
    x = symbols('x')
    assert ask(Q.extended_real(x), Q.positive(x)) == True
    assert ask(Q.extended_real(-x), Q.positive(x)) == True
    assert ask(Q.extended_real(-x), Q.negative(x)) == True

    assert ask(Q.extended_real(x+S.Infinity), Q.real(x)) == True
Esempio n. 13
0
 def Pow(expr, assumptions):
     """
     Real**Integer         -> Real
     Positive**Real        -> Real
     Real**(Integer/Even)  -> Real if base is nonnegative
     Real**(Integer/Odd)   -> Real
     Real**Imaginary       -> ?
     Imaginary**Real       -> ?
     Real**Real            -> ?
     """
     if expr.is_number:
         return AskRealHandler._number(expr, assumptions)
     if ask(Q.imaginary(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             if ask(Q.odd(expr.exp), assumptions):
                 return False
             elif ask(Q.even(expr.exp), assumptions):
                 return True
     elif ask(Q.real(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             if expr.exp.is_Rational and \
                ask(Q.even(expr.exp.q), assumptions):
                 return ask(Q.positive(expr.base), assumptions)
             elif ask(Q.integer(expr.exp), assumptions):
                 return True
             elif ask(Q.positive(expr.base), assumptions):
                 return True
             elif ask(Q.negative(expr.base), assumptions):
                 return False
Esempio n. 14
0
def _(expr, assumptions):
    """
    * Unbounded ** NonZero -> Unbounded

    * Bounded ** Bounded -> Bounded

    * Abs()<=1 ** Positive -> Bounded

    * Abs()>=1 ** Negative -> Bounded

    * Otherwise unknown
    """
    if expr.base == E:
        return ask(Q.finite(expr.exp), assumptions)

    base_bounded = ask(Q.finite(expr.base), assumptions)
    exp_bounded = ask(Q.finite(expr.exp), assumptions)
    if base_bounded is None and exp_bounded is None:  # Common Case
        return None
    if base_bounded is False and ask(Q.nonzero(expr.exp), assumptions):
        return False
    if base_bounded and exp_bounded:
        return True
    if (abs(expr.base) <= 1) == True and ask(Q.positive(expr.exp),
                                             assumptions):
        return True
    if (abs(expr.base) >= 1) == True and ask(Q.negative(expr.exp),
                                             assumptions):
        return True
    if (abs(expr.base) >= 1) == True and exp_bounded is False:
        return False
    return None
Esempio n. 15
0
def _(expr, assumptions):
    return ask(Q.negative_infinite(expr)
               | Q.negative(expr)
               | Q.zero(expr)
               | Q.positive(expr)
               | Q.positive_infinite(expr),
            assumptions)
Esempio n. 16
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if int_exp and ask(~Q.negative(exp), assumptions):
         return ask(Q.fullrank(base), assumptions)
     return None
Esempio n. 17
0
def test_composite_proposition():
    from sympy.logic.boolalg import Equivalent, Implies
    x = symbols('x')
    assert ask(True) is True
    assert ask(~Q.negative(x), Q.positive(x)) is True
    assert ask(~Q.real(x), Q.commutative(x)) is None
    assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False
    assert ask(Q.negative(x) & Q.integer(x)) is None
    assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True
    assert ask(Q.real(x) | Q.integer(x)) is None
    assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False
    assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False
    assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None
    assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True
    assert ask(Equivalent(Q.integer(x), Q.even(x))) is None
    assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None
Esempio n. 18
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if int_exp and ask(~Q.negative(exp), assumptions):
         return ask(Q.fullrank(base), assumptions)
     return None
Esempio n. 19
0
    def Pow(expr, assumptions):
        """
        Imaginary**integer/odd  -> Imaginary
        Imaginary**integer/even -> Real if integer % 2 == 0
        b**Imaginary            -> !Imaginary if exponent is an integer multiple of I*pi/log(b)
        Imaginary**Real         -> ?
        Negative**even root     -> Imaginary
        Negative**odd root      -> Real
        Negative**Real          -> Imaginary
        Real**Integer           -> Real
        Real**Positive          -> Real
        """
        if expr.is_number:
            return AskImaginaryHandler._number(expr, assumptions)

        if expr.base.func == C.exp:
            if ask(Q.imaginary(expr.base.args[0]), assumptions):
                if ask(Q.imaginary(expr.exp), assumptions):
                    return False
                i = expr.base.args[0] / I / pi
                if ask(Q.integer(2 * i), assumptions):
                    return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions)

        if ask(Q.imaginary(expr.base), assumptions):
            if ask(Q.integer(expr.exp), assumptions):
                odd = ask(Q.odd(expr.exp), assumptions)
                if odd is not None:
                    return odd
                return

        if ask(Q.imaginary(expr.exp), assumptions):
            imlog = ask(Q.imaginary(C.log(expr.base)), assumptions)
            if imlog is not None:
                return False  # I**i -> real; (2*I)**i -> complex ==> not imaginary

        if ask(Q.real(expr.base), assumptions):
            if ask(Q.real(expr.exp), assumptions):
                if ask(
                        Q.rational(expr.exp) & Q.even(denom(expr.exp)),
                        assumptions):
                    return ask(Q.negative(expr.base), assumptions)
                elif ask(Q.integer(expr.exp), assumptions):
                    return False
                elif ask(Q.positive(expr.base), assumptions):
                    return False
                elif ask(Q.negative(expr.base), assumptions):
                    return True
Esempio n. 20
0
 def log(expr, assumptions):
     r = ask(Q.real(expr.args[0]), assumptions)
     if r is not True:
         return r
     if ask(Q.positive(expr.args[0] - 1), assumptions):
         return True
     if ask(Q.negative(expr.args[0] - 1), assumptions):
         return False
Esempio n. 21
0
 def log(expr, assumptions):
     r = ask(Q.real(expr.args[0]), assumptions)
     if r is not True:
         return r
     if ask(Q.positive(expr.args[0] - 1), assumptions):
         return True
     if ask(Q.negative(expr.args[0] - 1), assumptions):
         return False
Esempio n. 22
0
File: sets.py Progetto: B-Rich/sympy
    def Pow(expr, assumptions):
        """
        Imaginary**integer/odd  -> Imaginary
        Imaginary**integer/even -> Real if integer % 2 == 0
        b**Imaginary            -> !Imaginary if exponent is an integer multiple of I*pi/log(b)
        Imaginary**Real         -> ?
        Negative**even root     -> Imaginary
        Negative**odd root      -> Real
        Negative**Real          -> Imaginary
        Real**Integer           -> Real
        Real**Positive          -> Real
        """
        if expr.is_number:
            return AskImaginaryHandler._number(expr, assumptions)

        if expr.base.func == C.exp:
            if ask(Q.imaginary(expr.base.args[0]), assumptions):
                if ask(Q.imaginary(expr.exp), assumptions):
                    return False
                i = expr.base.args[0]/I/pi
                if ask(Q.integer(2*i), assumptions):
                    return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions)

        if ask(Q.imaginary(expr.base), assumptions):
            if ask(Q.integer(expr.exp), assumptions):
                odd = ask(Q.odd(expr.exp), assumptions)
                if odd is not None:
                    return odd
                return

        if ask(Q.imaginary(expr.exp), assumptions):
            imlog = ask(Q.imaginary(C.log(expr.base)), assumptions)
            if imlog is not None:
                return False  # I**i -> real; (2*I)**i -> complex ==> not imaginary

        if ask(Q.real(expr.base), assumptions):
            if ask(Q.real(expr.exp), assumptions):
                if ask(Q.rational(expr.exp) & Q.even(denom(expr.exp)), assumptions):
                    return ask(Q.negative(expr.base), assumptions)
                elif ask(Q.integer(expr.exp), assumptions):
                    return False
                elif ask(Q.positive(expr.base), assumptions):
                    return False
                elif ask(Q.negative(expr.base), assumptions):
                    return True
Esempio n. 23
0
def refine_atan2(expr, assumptions):
    """
    Handler for the atan2 function

    Examples
    ========

    >>> from sympy import Symbol, Q, refine, atan2
    >>> from sympy.assumptions.refine import refine_atan2
    >>> from sympy.abc import x, y
    >>> refine_atan2(atan2(y,x), Q.real(y) & Q.positive(x))
    atan(y/x)
    >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.negative(x))
    atan(y/x) - pi
    >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.negative(x))
    atan(y/x) + pi
    >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.negative(x))
    pi
    >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.zero(x))
    pi/2
    >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.zero(x))
    -pi/2
    >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.zero(x))
    nan
    """
    from sympy.functions.elementary.trigonometric import atan
    from sympy.core import S

    y, x = expr.args
    if ask(Q.real(y) & Q.positive(x), assumptions):
        return atan(y / x)
    elif ask(Q.negative(y) & Q.negative(x), assumptions):
        return atan(y / x) - S.Pi
    elif ask(Q.positive(y) & Q.negative(x), assumptions):
        return atan(y / x) + S.Pi
    elif ask(Q.zero(y) & Q.negative(x), assumptions):
        return S.Pi
    elif ask(Q.positive(y) & Q.zero(x), assumptions):
        return S.Pi / 2
    elif ask(Q.negative(y) & Q.zero(x), assumptions):
        return -S.Pi / 2
    elif ask(Q.zero(y) & Q.zero(x), assumptions):
        return S.NaN
    else:
        return expr
Esempio n. 24
0
 def Pow(expr, assumptions):
     if expr.is_number: return expr.evalf() > 0
     if ask(Q.positive(expr.base), assumptions):
         return True
     if ask(Q.negative(expr.base), assumptions):
         if ask(Q.even(expr.exp), assumptions):
             return True
         if ask(Q.even(expr.exp), assumptions):
             return False
Esempio n. 25
0
File: sets.py Progetto: siv2r/sympy
def _(expr, assumptions):
    """
    * Real**Integer              -> Real
    * Positive**Real             -> Real
    * Real**(Integer/Even)       -> Real if base is nonnegative
    * Real**(Integer/Odd)        -> Real
    * Imaginary**(Integer/Even)  -> Real
    * Imaginary**(Integer/Odd)   -> not Real
    * Imaginary**Real            -> ? since Real could be 0 (giving real)
                                    or 1 (giving imaginary)
    * b**Imaginary               -> Real if log(b) is imaginary and b != 0
                                    and exponent != integer multiple of
                                    I*pi/log(b)
    * Real**Real                 -> ? e.g. sqrt(-1) is imaginary and
                                    sqrt(2) is not
    """
    if expr.is_number:
        return _RealPredicate_number(expr, assumptions)

    if expr.base.func == exp:
        if ask(Q.imaginary(expr.base.args[0]), assumptions):
            if ask(Q.imaginary(expr.exp), assumptions):
                return True
        # If the i = (exp's arg)/(I*pi) is an integer or half-integer
        # multiple of I*pi then 2*i will be an integer. In addition,
        # exp(i*I*pi) = (-1)**i so the overall realness of the expr
        # can be determined by replacing exp(i*I*pi) with (-1)**i.
        i = expr.base.args[0] / I / pi
        if ask(Q.integer(2 * i), assumptions):
            return ask(Q.real(((-1)**i)**expr.exp), assumptions)
        return

    if ask(Q.imaginary(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            odd = ask(Q.odd(expr.exp), assumptions)
            if odd is not None:
                return not odd
            return

    if ask(Q.imaginary(expr.exp), assumptions):
        imlog = ask(Q.imaginary(log(expr.base)), assumptions)
        if imlog is not None:
            # I**i -> real, log(I) is imag;
            # (2*I)**i -> complex, log(2*I) is not imag
            return imlog

    if ask(Q.real(expr.base), assumptions):
        if ask(Q.real(expr.exp), assumptions):
            if expr.exp.is_Rational and \
                    ask(Q.even(expr.exp.q), assumptions):
                return ask(Q.positive(expr.base), assumptions)
            elif ask(Q.integer(expr.exp), assumptions):
                return True
            elif ask(Q.positive(expr.base), assumptions):
                return True
            elif ask(Q.negative(expr.base), assumptions):
                return False
Esempio n. 26
0
 def Pow(expr, assumptions):
     if expr.is_number: return expr.evalf() > 0
     if ask(Q.positive(expr.base), assumptions):
         return True
     if ask(Q.negative(expr.base), assumptions):
         if ask(Q.even(expr.exp), assumptions):
             return True
         if ask(Q.even(expr.exp), assumptions):
             return False
Esempio n. 27
0
def test_real():
    x, y = symbols('x,y')
    assert ask(Q.real(x)) == None
    assert ask(Q.real(x), Q.real(x)) == True
    assert ask(Q.real(x), Q.nonzero(x)) == True
    assert ask(Q.real(x), Q.positive(x)) == True
    assert ask(Q.real(x), Q.negative(x)) == True
    assert ask(Q.real(x), Q.integer(x)) == True
    assert ask(Q.real(x), Q.even(x)) == True
    assert ask(Q.real(x), Q.prime(x)) == True

    assert ask(Q.real(x / sqrt(2)), Q.real(x)) == True
    assert ask(Q.real(x / sqrt(-2)), Q.real(x)) == False

    I = S.ImaginaryUnit
    assert ask(Q.real(x + 1), Q.real(x)) == True
    assert ask(Q.real(x + I), Q.real(x)) == False
    assert ask(Q.real(x + I), Q.complex(x)) == None

    assert ask(Q.real(2 * x), Q.real(x)) == True
    assert ask(Q.real(I * x), Q.real(x)) == False
    assert ask(Q.real(I * x), Q.imaginary(x)) == True
    assert ask(Q.real(I * x), Q.complex(x)) == None

    assert ask(Q.real(x**2), Q.real(x)) == True
    assert ask(Q.real(sqrt(x)), Q.negative(x)) == False
    assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) == True
    assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) == None
    assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) == True

    # trigonometric functions
    assert ask(Q.real(sin(x))) == None
    assert ask(Q.real(cos(x))) == None
    assert ask(Q.real(sin(x)), Q.real(x)) == True
    assert ask(Q.real(cos(x)), Q.real(x)) == True

    # exponential function
    assert ask(Q.real(exp(x))) == None
    assert ask(Q.real(exp(x)), Q.real(x)) == True
    assert ask(Q.real(x + exp(x)), Q.real(x)) == True

    # Q.complexes
    assert ask(Q.real(re(x))) == True
    assert ask(Q.real(im(x))) == True
Esempio n. 28
0
def test_real():
    x, y = symbols('x,y')
    assert ask(Q.real(x)) == None
    assert ask(Q.real(x), Q.real(x)) == True
    assert ask(Q.real(x), Q.nonzero(x)) == True
    assert ask(Q.real(x), Q.positive(x)) == True
    assert ask(Q.real(x), Q.negative(x)) == True
    assert ask(Q.real(x), Q.integer(x)) == True
    assert ask(Q.real(x), Q.even(x)) == True
    assert ask(Q.real(x), Q.prime(x)) == True

    assert ask(Q.real(x/sqrt(2)), Q.real(x)) == True
    assert ask(Q.real(x/sqrt(-2)), Q.real(x)) == False

    I = S.ImaginaryUnit
    assert ask(Q.real(x+1), Q.real(x)) == True
    assert ask(Q.real(x+I), Q.real(x)) == False
    assert ask(Q.real(x+I), Q.complex(x)) == None

    assert ask(Q.real(2*x), Q.real(x)) == True
    assert ask(Q.real(I*x), Q.real(x)) == False
    assert ask(Q.real(I*x), Q.imaginary(x)) == True
    assert ask(Q.real(I*x), Q.complex(x)) == None

    assert ask(Q.real(x**2), Q.real(x)) == True
    assert ask(Q.real(sqrt(x)), Q.negative(x)) == False
    assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) == True
    assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) == None
    assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) == True

    # trigonometric functions
    assert ask(Q.real(sin(x))) == None
    assert ask(Q.real(cos(x))) == None
    assert ask(Q.real(sin(x)), Q.real(x)) == True
    assert ask(Q.real(cos(x)), Q.real(x)) == True

    # exponential function
    assert ask(Q.real(exp(x))) == None
    assert ask(Q.real(exp(x)), Q.real(x)) == True
    assert ask(Q.real(x + exp(x)), Q.real(x)) == True

    # Q.complexes
    assert ask(Q.real(re(x))) == True
    assert ask(Q.real(im(x))) == True
Esempio n. 29
0
 def Pow(expr, assumptions):
     if expr.is_number:
         return AskEvenHandler._number(expr, assumptions)
     if ask(Q.integer(expr.exp), assumptions):
         if ask(Q.positive(expr.exp), assumptions):
             return ask(Q.even(expr.base), assumptions)
         elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
             return False
         elif expr.base is S.NegativeOne:
             return False
Esempio n. 30
0
 def Pow(expr, assumptions):
     if expr.is_number:
         return AskEvenHandler._number(expr, assumptions)
     if ask(Q.integer(expr.exp), assumptions):
         if ask(Q.positive(expr.exp), assumptions):
             return ask(Q.even(expr.base), assumptions)
         elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
             return False
         elif expr.base is S.NegativeOne:
             return False
Esempio n. 31
0
 def Mul(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     result = True
     for arg in expr.args:
         if ask(Q.positive(arg), assumptions): continue
         elif ask(Q.negative(arg), assumptions):
             result = result ^ True
         else: return
     return result
Esempio n. 32
0
def _(expr, assumptions):
    if expr.is_number:
        return _EvenPredicate_number(expr, assumptions)
    if ask(Q.integer(expr.exp), assumptions):
        if ask(Q.positive(expr.exp), assumptions):
            return ask(Q.even(expr.base), assumptions)
        elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
            return False
        elif expr.base is S.NegativeOne:
            return False
Esempio n. 33
0
def _(expr, assumptions):
    """
    * Imaginary**Odd        -> Imaginary
    * Imaginary**Even       -> Real
    * b**Imaginary          -> !Imaginary if exponent is an integer
                               multiple of I*pi/log(b)
    * Imaginary**Real       -> ?
    * Positive**Real        -> Real
    * Negative**Integer     -> Real
    * Negative**(Integer/2) -> Imaginary
    * Negative**Real        -> not Imaginary if exponent is not Rational
    """
    if expr.is_number:
        return _Imaginary_number(expr, assumptions)

    if expr.base == E:
        a = expr.exp / I / pi
        return ask(Q.integer(2 * a) & ~Q.integer(a), assumptions)

    if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
        if ask(Q.imaginary(expr.base.exp), assumptions):
            if ask(Q.imaginary(expr.exp), assumptions):
                return False
            i = expr.base.exp / I / pi
            if ask(Q.integer(2 * i), assumptions):
                return ask(Q.imaginary((S.NegativeOne**i)**expr.exp),
                           assumptions)

    if ask(Q.imaginary(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            odd = ask(Q.odd(expr.exp), assumptions)
            if odd is not None:
                return odd
            return

    if ask(Q.imaginary(expr.exp), assumptions):
        imlog = ask(Q.imaginary(log(expr.base)), assumptions)
        if imlog is not None:
            # I**i -> real; (2*I)**i -> complex ==> not imaginary
            return False

    if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions):
        if ask(Q.positive(expr.base), assumptions):
            return False
        else:
            rat = ask(Q.rational(expr.exp), assumptions)
            if not rat:
                return rat
            if ask(Q.integer(expr.exp), assumptions):
                return False
            else:
                half = ask(Q.integer(2 * expr.exp), assumptions)
                if half:
                    return ask(Q.negative(expr.base), assumptions)
                return half
Esempio n. 34
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if not int_exp:
         return None
     non_negative = ask(~Q.negative(exp), assumptions)
     if (non_negative or non_negative == False
             and ask(Q.invertible(base), assumptions)):
         return ask(Q.complex_elements(base), assumptions)
     return None
Esempio n. 35
0
 def Pow(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     if ask(Q.positive(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             return True
     if ask(Q.negative(expr.base), assumptions):
         if ask(Q.even(expr.exp), assumptions):
             return True
         if ask(Q.odd(expr.exp), assumptions):
             return False
Esempio n. 36
0
 def MatPow(expr, assumptions):
     # only for integer powers
     base, exp = expr.args
     int_exp = ask(Q.integer(exp), assumptions)
     if not int_exp:
         return None
     non_negative = ask(~Q.negative(exp), assumptions)
     if (non_negative or non_negative == False
                         and ask(Q.invertible(base), assumptions)):
         return ask(Q.complex_elements(base), assumptions)
     return None
Esempio n. 37
0
def _(expr, assumptions):
    if expr.is_number:
        return _PositivePredicate_number(expr, assumptions)
    if ask(Q.positive(expr.base), assumptions):
        if ask(Q.real(expr.exp), assumptions):
            return True
    if ask(Q.negative(expr.base), assumptions):
        if ask(Q.even(expr.exp), assumptions):
            return True
        if ask(Q.odd(expr.exp), assumptions):
            return False
Esempio n. 38
0
 def Pow(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     if ask(Q.positive(expr.base), assumptions):
         if ask(Q.real(expr.exp), assumptions):
             return True
     if ask(Q.negative(expr.base), assumptions):
         if ask(Q.even(expr.exp), assumptions):
             return True
         if ask(Q.odd(expr.exp), assumptions):
             return False
Esempio n. 39
0
 def Mul(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     result = True
     for arg in expr.args:
         if ask(Q.positive(arg), assumptions): continue
         elif ask(Q.negative(arg), assumptions):
             result = result ^ True
         else:
             return
     return result
Esempio n. 40
0
def _(expr, assumptions):
    # only for integer powers
    base, exp = expr.args
    int_exp = ask(Q.integer(exp), assumptions)
    if not int_exp:
        return None
    non_negative = ask(~Q.negative(exp), assumptions)
    if (non_negative
            or non_negative == False and ask(Q.invertible(base), assumptions)):
        return ask(Q.diagonal(base), assumptions)
    return None
Esempio n. 41
0
def _(expr, assumptions):
    if expr.is_number:
        return _PositivePredicate_number(expr, assumptions)
    result = True
    for arg in expr.args:
        if ask(Q.positive(arg), assumptions):
            continue
        elif ask(Q.negative(arg), assumptions):
            result = result ^ True
        else:
            return
    return result
Esempio n. 42
0
    def Pow(expr, assumptions):
        """
        Real**Integer              -> Real
        Positive**Real             -> Real
        Real**(Integer/Even)       -> Real if base is nonnegative
        Real**(Integer/Odd)        -> Real
        Imaginary**(Integer/Even)  -> Real
        Imaginary**(Integer/Odd)   -> not Real
        Imaginary**Real            -> ? since Real could be 0 (giving real) or 1 (giving imaginary)
        b**Imaginary               -> Real if log(b) is imaginary and b != 0 and exponent != integer multiple of I*pi/log(b)
        Real**Real                 -> ? e.g. sqrt(-1) is imaginary and sqrt(2) is not
        """
        if expr.is_number:
            return AskRealHandler._number(expr, assumptions)

        if expr.base.func == exp:
            if ask(Q.imaginary(expr.base.args[0]), assumptions):
                if ask(Q.imaginary(expr.exp), assumptions):
                    return True
            # If the i = (exp's arg)/(I*pi) is an integer or half-integer
            # multiple of I*pi then 2*i will be an integer. In addition,
            # exp(i*I*pi) = (-1)**i so the overall realness of the expr
            # can be determined by replacing exp(i*I*pi) with (-1)**i.
            i = expr.base.args[0]/I/pi
            if ask(Q.integer(2*i), assumptions):
                return ask(Q.real(((-1)**i)**expr.exp), assumptions)
            return

        if ask(Q.imaginary(expr.base), assumptions):
            if ask(Q.integer(expr.exp), assumptions):
                odd = ask(Q.odd(expr.exp), assumptions)
                if odd is not None:
                    return not odd
                return

        if ask(Q.imaginary(expr.exp), assumptions):
            imlog = ask(Q.imaginary(log(expr.base)), assumptions)
            if imlog is not None:
                # I**i -> real, log(I) is imag;
                # (2*I)**i -> complex, log(2*I) is not imag
                return imlog

        if ask(Q.real(expr.base), assumptions):
            if ask(Q.real(expr.exp), assumptions):
                if expr.exp.is_Rational and \
                        ask(Q.even(expr.exp.q), assumptions):
                    return ask(Q.positive(expr.base), assumptions)
                elif ask(Q.integer(expr.exp), assumptions):
                    return True
                elif ask(Q.positive(expr.base), assumptions):
                    return True
                elif ask(Q.negative(expr.base), assumptions):
                    return False
Esempio n. 43
0
 def Mul(expr, assumptions):
     if expr.is_number:
         return AskNegativeHandler._number(expr, assumptions)
     result = None
     for arg in expr.args:
         if result is None: result = False
         if ask(Q.negative(arg), assumptions):
             result = not result
         elif ask(Q.positive(arg), assumptions):
             pass
         else: return
     return result
Esempio n. 44
0
def test_positive():
    x, y, z, w = symbols('x,y,z,w')
    assert ask(Q.positive(x), Q.positive(x)) == True
    assert ask(Q.positive(x), Q.negative(x)) == False
    assert ask(Q.positive(x), Q.nonzero(x)) == None

    assert ask(Q.positive(-x), Q.positive(x)) == False
    assert ask(Q.positive(-x), Q.negative(x)) == True

    assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) == True
    assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) == None

    assert ask(Q.positive(2 * x), Q.positive(x)) == True
    assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w)
    assert ask(Q.positive(x * y * z)) == None
    assert ask(Q.positive(x * y * z), assumptions) == True
    assert ask(Q.positive(-x * y * z), assumptions) == False

    assert ask(Q.positive(x**2), Q.positive(x)) == True
    assert ask(Q.positive(x**2), Q.negative(x)) == True

    #exponential
    assert ask(Q.positive(exp(x)), Q.real(x)) == True
    assert ask(Q.positive(x + exp(x)), Q.real(x)) == None

    #absolute value
    assert ask(Q.positive(Abs(x))) == None  # Abs(0) = 0
    assert ask(Q.positive(Abs(x)), Q.positive(x)) == True
Esempio n. 45
0
def test_positive():
    x, y, z, w = symbols('x,y,z,w')
    assert ask(Q.positive(x), Q.positive(x)) == True
    assert ask(Q.positive(x), Q.negative(x)) == False
    assert ask(Q.positive(x), Q.nonzero(x)) == None

    assert ask(Q.positive(-x), Q.positive(x)) == False
    assert ask(Q.positive(-x), Q.negative(x)) == True

    assert ask(Q.positive(x+y), Q.positive(x) & Q.positive(y)) == True
    assert ask(Q.positive(x+y), Q.positive(x) & Q.negative(y)) == None

    assert ask(Q.positive(2*x), Q.positive(x)) == True
    assumptions =  Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w)
    assert ask(Q.positive(x*y*z))  == None
    assert ask(Q.positive(x*y*z), assumptions) == True
    assert ask(Q.positive(-x*y*z), assumptions) == False

    assert ask(Q.positive(x**2), Q.positive(x)) == True
    assert ask(Q.positive(x**2), Q.negative(x)) == True

    #exponential
    assert ask(Q.positive(exp(x)), Q.real(x)) == True
    assert ask(Q.positive(x + exp(x)), Q.real(x)) == None

    #absolute value
    assert ask(Q.positive(Abs(x))) == None # Abs(0) = 0
    assert ask(Q.positive(Abs(x)), Q.positive(x)) == True
Esempio n. 46
0
 def Add(expr, assumptions):
     """
     Positive + Positive -> Positive,
     Negative + Negative -> Negative
     """
     if expr.is_number:
         return AskNegativeHandler._number(expr, assumptions)
     for arg in expr.args:
         if not ask(Q.negative(arg), assumptions):
             break
     else:
         # if all argument's are negative
         return True
Esempio n. 47
0
 def Add(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     nonneg = 0
     for arg in expr.args:
         if ask(Q.positive(arg), assumptions) is not True:
             if ask(Q.negative(arg), assumptions) is False:
                 nonneg += 1
             else:
                 break
     else:
         if nonneg < len(expr.args):
             return True
Esempio n. 48
0
 def Mul(expr, assumptions):
     if expr.is_number:
         return AskNegativeHandler._number(expr, assumptions)
     result = None
     for arg in expr.args:
         if result is None: result = False
         if ask(Q.negative(arg), assumptions):
             result = not result
         elif ask(Q.positive(arg), assumptions):
             pass
         else:
             return
     return result
Esempio n. 49
0
 def Add(expr, assumptions):
     """
     Positive + Positive -> Positive,
     Negative + Negative -> Negative
     """
     if expr.is_number:
         return AskNegativeHandler._number(expr, assumptions)
     for arg in expr.args:
         if not ask(Q.negative(arg), assumptions):
             break
     else:
         # if all argument's are negative
         return True
Esempio n. 50
0
def refine_sign(expr, assumptions):
    """
    Handler for sign.

    Examples
    ========

    >>> from sympy.assumptions.refine import refine_sign
    >>> from sympy import Symbol, Q, sign, im
    >>> x = Symbol('x', real = True)
    >>> expr = sign(x)
    >>> refine_sign(expr, Q.positive(x) & Q.nonzero(x))
    1
    >>> refine_sign(expr, Q.negative(x) & Q.nonzero(x))
    -1
    >>> refine_sign(expr, Q.zero(x))
    0
    >>> y = Symbol('y', imaginary = True)
    >>> expr = sign(y)
    >>> refine_sign(expr, Q.positive(im(y)))
    I
    >>> refine_sign(expr, Q.negative(im(y)))
    -I
    """
    arg = expr.args[0]
    if ask(Q.zero(arg), assumptions):
        return S.Zero
    if ask(Q.real(arg)):
        if ask(Q.positive(arg), assumptions):
            return S.One
        if ask(Q.negative(arg), assumptions):
            return S.NegativeOne
    if ask(Q.imaginary(arg)):
        arg_re, arg_im = arg.as_real_imag()
        if ask(Q.positive(arg_im), assumptions):
            return S.ImaginaryUnit
        if ask(Q.negative(arg_im), assumptions):
            return -S.ImaginaryUnit
    return expr
Esempio n. 51
0
 def Add(expr, assumptions):
     if expr.is_number:
         return AskPositiveHandler._number(expr, assumptions)
     nonneg = 0
     for arg in expr.args:
         if ask(Q.positive(arg), assumptions) is not True:
             if ask(Q.negative(arg), assumptions) is False:
                 nonneg += 1
             else:
                 break
     else:
         if nonneg < len(expr.args):
             return True
Esempio n. 52
0
def _(expr, assumptions):
    if expr.is_number:
        return _NegativePredicate_number(expr, assumptions)
    result = None
    for arg in expr.args:
        if result is None:
            result = False
        if ask(Q.negative(arg), assumptions):
            result = not result
        elif ask(Q.positive(arg), assumptions):
            pass
        else:
            return
    return result
Esempio n. 53
0
def refine_abs(expr, assumptions):
    """
    Handler for the absolute value.

    Examples::

    >>> from sympy import Symbol, Q, refine, Abs
    >>> from sympy.assumptions.refine import refine_abs
    >>> from sympy.abc import x
    >>> refine_abs(Abs(x), Q.real(x))
    >>> refine_abs(Abs(x), Q.positive(x))
    x
    >>> refine_abs(Abs(x), Q.negative(x))
    -x

    """
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions) and \
            fuzzy_not(ask(Q.negative(arg), assumptions)):
        # if it's nonnegative
        return arg
    if ask(Q.negative(arg), assumptions):
        return -arg
Esempio n. 54
0
def refine_abs(expr, assumptions):
    """
    Handler for the absolute value.

    Examples
    ========

    >>> from sympy import Symbol, Q, refine, Abs
    >>> from sympy.assumptions.refine import refine_abs
    >>> from sympy.abc import x
    >>> refine_abs(Abs(x), Q.real(x))
    >>> refine_abs(Abs(x), Q.positive(x))
    x
    >>> refine_abs(Abs(x), Q.negative(x))
    -x

    """
    from sympy.core.logic import fuzzy_not
    from sympy import Abs
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions) and \
            fuzzy_not(ask(Q.negative(arg), assumptions)):
        # if it's nonnegative
        return arg
    if ask(Q.negative(arg), assumptions):
        return -arg
    # arg is Mul
    if isinstance(arg, Mul):
        r = [refine(abs(a), assumptions) for a in arg.args]
        non_abs = []
        in_abs = []
        for i in r:
            if isinstance(i, Abs):
                in_abs.append(i.args[0])
            else:
                non_abs.append(i)
        return Mul(*non_abs) * Abs(Mul(*in_abs))
Esempio n. 55
0
 def Pow(expr, assumptions):
     """
     Real ** Even -> NonNegative
     Real ** Odd  -> same_as_base
     NonNegative ** Positive -> NonNegative
     """
     if expr.is_number:
         return AskNegativeHandler._number(expr, assumptions)
     if ask(Q.real(expr.base), assumptions):
         if ask(Q.positive(expr.base), assumptions):
             return False
         if ask(Q.even(expr.exp), assumptions):
             return False
         if ask(Q.odd(expr.exp), assumptions):
             return ask(Q.negative(expr.base), assumptions)
Esempio n. 56
0
    def Pow(expr, assumptions):
        """
        Imaginary**Odd        -> Imaginary
        Imaginary**Even       -> Real
        b**Imaginary          -> !Imaginary if exponent is an integer multiple of I*pi/log(b)
        Imaginary**Real       -> ?
        Positive**Real        -> Real
        Negative**Integer     -> Real
        Negative**(Integer/2) -> Imaginary
        Negative**Real        -> not Imaginary if exponent is not Rational
        """
        if expr.is_number:
            return AskImaginaryHandler._number(expr, assumptions)

        if expr.base.func == exp:
            if ask(Q.imaginary(expr.base.args[0]), assumptions):
                if ask(Q.imaginary(expr.exp), assumptions):
                    return False
                i = expr.base.args[0]/I/pi
                if ask(Q.integer(2*i), assumptions):
                    return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions)

        if ask(Q.imaginary(expr.base), assumptions):
            if ask(Q.integer(expr.exp), assumptions):
                odd = ask(Q.odd(expr.exp), assumptions)
                if odd is not None:
                    return odd
                return

        if ask(Q.imaginary(expr.exp), assumptions):
            imlog = ask(Q.imaginary(log(expr.base)), assumptions)
            if imlog is not None:
                return False  # I**i -> real; (2*I)**i -> complex ==> not imaginary

        if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions):
            if ask(Q.positive(expr.base), assumptions):
                return False
            else:
                rat = ask(Q.rational(expr.exp), assumptions)
                if not rat:
                    return rat
                if ask(Q.integer(expr.exp), assumptions):
                    return False
                else:
                    half = ask(Q.integer(2*expr.exp), assumptions)
                    if half:
                        return ask(Q.negative(expr.base), assumptions)
                    return half
Esempio n. 57
0
def test_bounded():
    x, y = symbols('x,y')
    assert ask(Q.bounded(x)) == False
    assert ask(Q.bounded(x), Q.bounded(x)) == True
    assert ask(Q.bounded(x), Q.bounded(y)) == False
    assert ask(Q.bounded(x), Q.complex(x)) == False

    assert ask(Q.bounded(x+1)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x)) == True
    assert ask(Q.bounded(x+y)) == None
    assert ask(Q.bounded(x+y), Q.bounded(x)) == False
    assert ask(Q.bounded(x+1), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(2*x)) == False
    assert ask(Q.bounded(2*x), Q.bounded(x)) == True
    assert ask(Q.bounded(x*y)) == None
    assert ask(Q.bounded(x*y), Q.bounded(x)) == False
    assert ask(Q.bounded(x*y), Q.bounded(x) & Q.bounded(y)) == True

    assert ask(Q.bounded(x**2)) == False
    assert ask(Q.bounded(2**x)) == False
    assert ask(Q.bounded(2**x), Q.bounded(x)) == True
    assert ask(Q.bounded(x**x)) == False
    assert ask(Q.bounded(Rational(1,2) ** x)) == None
    assert ask(Q.bounded(Rational(1,2) ** x), Q.positive(x)) == True
    assert ask(Q.bounded(Rational(1,2) ** x), Q.negative(x)) == False
    assert ask(Q.bounded(sqrt(x))) == False

    # sign function
    assert ask(Q.bounded(sign(x))) == True
    assert ask(Q.bounded(sign(x)), ~Q.bounded(x)) == True

    # exponential functions
    assert ask(Q.bounded(log(x))) == False
    assert ask(Q.bounded(log(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(x))) == False
    assert ask(Q.bounded(exp(x)), Q.bounded(x)) == True
    assert ask(Q.bounded(exp(2))) == True

    # trigonometric functions
    assert ask(Q.bounded(sin(x))) == True
    assert ask(Q.bounded(sin(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(cos(x))) == True
    assert ask(Q.bounded(cos(x)), ~Q.bounded(x)) == True
    assert ask(Q.bounded(2*sin(x))) == True
    assert ask(Q.bounded(sin(x)**2)) == True
    assert ask(Q.bounded(cos(x)**2)) == True
    assert ask(Q.bounded(cos(x) + sin(x))) == True
Esempio n. 58
0
 def Pow(expr, assumptions):
     """
     Unbounded ** Whatever -> Unbounded
     Bounded ** Unbounded -> Unbounded if base > 1
     Bounded ** Unbounded -> Unbounded if base < 1
     """
     base_bounded = ask(Q.bounded(expr.base), assumptions)
     if not base_bounded:
         return False
     if ask(Q.bounded(expr.exp), assumptions):# and base_bounded:
         return True
     if expr.base.is_number:# and base_bounded and not exp_bounded:
         # We need to implement relations for this
         if abs(expr.base) > 1:
             return False
         return ask(~Q.negative(expr.exp), assumptions)
Esempio n. 59
0
def test_Rational_number():
    r = Rational(3,4)
    assert ask(Q.commutative(r))      == True
    assert ask(Q.integer(r))          == False
    assert ask(Q.rational(r))         == True
    assert ask(Q.real(r))             == True
    assert ask(Q.complex(r))          == True
    assert ask(Q.irrational(r))       == False
    assert ask(Q.imaginary(r))        == False
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False
    assert ask(Q.even(r))             == False
    assert ask(Q.odd(r))              == False
    assert ask(Q.bounded(r))          == True
    assert ask(Q.infinitesimal(r))    == False
    assert ask(Q.prime(r))            == False
    assert ask(Q.composite(r))        == False

    r = Rational(1,4)
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False

    r = Rational(5,4)
    assert ask(Q.negative(r))         == False
    assert ask(Q.positive(r))         == True

    r = Rational(5,3)
    assert ask(Q.positive(r))         == True
    assert ask(Q.negative(r))         == False

    r = Rational(-3,4)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True

    r = Rational(-1,4)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True

    r = Rational(-5,4)
    assert ask(Q.negative(r))         == True
    assert ask(Q.positive(r))         == False

    r = Rational(-5,3)
    assert ask(Q.positive(r))         == False
    assert ask(Q.negative(r))         == True