Esempio n. 1
0
def test_Dict():
    assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
    assert str(Dict({
        1: x**2,
        2: y * x
    })) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
    assert sstr(Dict({1: x**2, 2: y * x})) == "{1: x**2, 2: x*y}"
Esempio n. 2
0
def test_domains():
    X, Y = Die('x', 6), Die('y', 6)
    x, y = X.symbol, Y.symbol
    # Domains
    d = where(X > Y)
    assert d.condition == (x > y)
    d = where(And(X > Y, Y > 3))
    assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y,
                                                 4)), And(Eq(x, 6), Eq(y, 5)),
                                And(Eq(x, 6), Eq(y, 4)))
    assert len(d.elements) == 3

    assert len(pspace(X + Y).domain.elements) == 36

    Z = Die('x', 4)

    raises(ValueError,
           lambda: P(X > Z))  # Two domains with same internal symbol

    assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2

    assert where(X > 3).set == FiniteSet(4, 5, 6)
    assert X.pspace.domain.dict == FiniteSet(
        *[Dict({X.symbol: i}) for i in range(1, 7)])

    assert where(X > Y).dict == FiniteSet(*[
        Dict({
            X.symbol: i,
            Y.symbol: j
        }) for i in range(1, 7) for j in range(1, 7) if i > j
    ])
Esempio n. 3
0
def test_gcd_terms():
    f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \
        (2*x + 2)*(x + 6)/(5*x**2 + 5)

    assert _gcd_terms(f) == ((Rational(6, 5)) * ((1 + x) / (1 + x**2)), 5 + x,
                             1)
    assert _gcd_terms(Add.make_args(f)) == \
        ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1)

    newf = (Rational(6, 5)) * ((1 + x) * (5 + x) / (1 + x**2))
    assert gcd_terms(f) == newf
    args = Add.make_args(f)
    # non-Basic sequences of terms treated as terms of Add
    assert gcd_terms(list(args)) == newf
    assert gcd_terms(tuple(args)) == newf
    assert gcd_terms(set(args)) == newf
    # but a Basic sequence is treated as a container
    assert gcd_terms(Tuple(*args)) != newf
    assert gcd_terms(Basic(Tuple(S(1), 3*y + 3*x*y), Tuple(S(1), S(3)))) == \
        Basic((S(1), 3*y*(x + 1)), (S(1), S(3)))
    # but we shouldn't change keys of a dictionary or some may be lost
    assert gcd_terms(Dict((x*(1 + y), S(2)), (x + x*y, y + x*y))) == \
        Dict({x*(y + 1): S(2), x + x*y: y*(1 + x)})

    assert gcd_terms((2 * x + 2)**3 +
                     (2 * x + 2)**2) == 4 * (x + 1)**2 * (2 * x + 3)

    assert gcd_terms(0) == 0
    assert gcd_terms(1) == 1
    assert gcd_terms(x) == x
    assert gcd_terms(2 + 2 * x) == Mul(2, 1 + x, evaluate=False)
    arg = x * (2 * x + 4 * y)
    garg = 2 * x * (x + 2 * y)
    assert gcd_terms(arg) == garg
    assert gcd_terms(sin(arg)) == sin(garg)

    # issue 6139-like
    alpha, alpha1, alpha2, alpha3 = symbols('alpha:4')
    a = alpha**2 - alpha * x**2 + alpha + x**3 - x * (alpha + 1)
    rep = (alpha,
           (1 + sqrt(5)) / 2 + alpha1 * x + alpha2 * x**2 + alpha3 * x**3)
    s = (a / (x - alpha)).subs(*rep).series(x, 0, 1)
    assert simplify(collect(s, x)) == -sqrt(5) / 2 - Rational(3, 2) + O(x)

    # issue 5917
    assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1)
    assert _gcd_terms([2 * x + 4]) == (2, x + 2, 1)

    eq = x / (x + 1 / x)
    assert gcd_terms(eq, fraction=False) == eq
    eq = x / 2 / y + 1 / x / y
    assert gcd_terms(eq, fraction=True, clear=True) == \
        (x**2 + 2)/(2*x*y)
    assert gcd_terms(eq, fraction=True, clear=False) == \
        (x**2/2 + 1)/(x*y)
    assert gcd_terms(eq, fraction=False, clear=True) == \
        (x + 2/x)/(2*y)
    assert gcd_terms(eq, fraction=False, clear=False) == \
        (x/2 + 1/x)/y
Esempio n. 4
0
 def fromdict(cls, name, density):
     symbol = Symbol(name)
     domain = SingleFiniteDomain(symbol, frozenset(density.keys()))
     density = dict((frozenset(((symbol, val), )), prob)
                    for val, prob in density.items())
     density = Dict(density)
     return FinitePSpace.__new__(cls, domain, density)
Esempio n. 5
0
    def __new__(cls, domain, density):
        density = {sympify(key): sympify(val) for key, val in density.items()}
        public_density = Dict(density)

        obj = PSpace.__new__(cls, domain, public_density)
        obj._density = density
        return obj
Esempio n. 6
0
File: frv.py Progetto: ness01/sympy
 def fromdict(cls, density, symbol=None):
     symbol = symbol or cls.create_symbol()
     domain = SingleFiniteDomain(symbol, frozenset(density.keys()))
     density = dict((frozenset(((symbol, val), )), prob)
                    for val, prob in density.items())
     density = Dict(density)
     return FinitePSpace.__new__(cls, domain, density)
Esempio n. 7
0
 def _density(self):
     proditer = product(
         *[iter(space._density.items()) for space in self.spaces])
     d = {}
     for items in proditer:
         elems, probs = list(zip(*items))
         elem = sumsets(elems)
         prob = Mul(*probs)
         d[elem] = d.get(elem, S.Zero) + prob
     return Dict(d)
Esempio n. 8
0
    def __new__(cls, iterable=None, shape=None, **kwargs):
        shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
        shape = Tuple(*map(_sympify, shape))
        cls._check_special_bounds(flat_list, shape)
        loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)

        # Sparse array:
        if isinstance(flat_list, (dict, Dict)):
            sparse_array = Dict(flat_list)
        else:
            sparse_array = {}
            for i, el in enumerate(flatten(flat_list)):
                if el != 0:
                    sparse_array[i] = _sympify(el)

        sparse_array = Dict(sparse_array)

        self = Basic.__new__(cls, sparse_array, shape, **kwargs)
        self._shape = shape
        self._rank = len(shape)
        self._loop_size = loop_size
        self._sparse_array = sparse_array

        return self
Esempio n. 9
0
def test_Dict():
    x, y, z = symbols('x y z')
    d = Dict({x: 1, y: 2, z: 3})
    assert d[x] == 1
    assert d[y] == 2
    raises(KeyError, lambda: d[2])
    raises(KeyError, lambda: d['2'])
    assert len(d) == 3
    assert set(d.keys()) == {x, y, z}
    assert set(d.values()) == {S.One, S(2), S(3)}
    assert d.get(5, 'default') == 'default'
    assert d.get('5', 'default') == 'default'
    assert x in d and z in d and 5 not in d and '5' not in d
    assert d.has(x) and d.has(1)  # SymPy Basic .has method

    # Test input types
    # input - a Python dict
    # input - items as args - SymPy style
    assert (Dict({x: 1, y: 2, z: 3}) ==
            Dict((x, 1), (y, 2), (z, 3)))

    raises(TypeError, lambda: Dict(((x, 1), (y, 2), (z, 3))))
    with raises(NotImplementedError):
        d[5] = 6  # assert immutability

    assert set(
        d.items()) == {Tuple(x, S.One), Tuple(y, S(2)), Tuple(z, S(3))}
    assert set(d) == {x, y, z}
    assert str(d) == '{x: 1, y: 2, z: 3}'
    assert d.__repr__() == '{x: 1, y: 2, z: 3}'

    # Test creating a Dict from a Dict.
    d = Dict({x: 1, y: 2, z: 3})
    assert d == Dict(d)

    # Test for supporting defaultdict
    d = defaultdict(int)
    assert d[x] == 0
    assert d[y] == 0
    assert d[z] == 0
    assert Dict(d)
    d = Dict(d)
    assert len(d) == 3
    assert set(d.keys()) == {x, y, z}
    assert set(d.values()) == {S.Zero, S.Zero, S.Zero}
Esempio n. 10
0
def test_dict_set():
    a, b, c = map(Wild, 'abc')

    f = 3 * cos(4 * x)
    r = f.match(a * cos(b * x))
    assert r == {a: 3, b: 4}
    e = a / b * sin(b * x)
    assert e.subs(r) == r[a] / r[b] * sin(r[b] * x)
    assert e.subs(r) == 3 * sin(4 * x) / 4
    s = set(r.items())
    assert e.subs(s) == r[a] / r[b] * sin(r[b] * x)
    assert e.subs(s) == 3 * sin(4 * x) / 4

    assert e.subs(r) == r[a] / r[b] * sin(r[b] * x)
    assert e.subs(r) == 3 * sin(4 * x) / 4
    assert x.subs(Dict((x, 1))) == 1
Esempio n. 11
0
    def __new__(cls, parameters_or_coordsys, definition, limits=None):

        if isinstance(parameters_or_coordsys, CoordSys3D):
            parameters = parameters_or_coordsys.base_scalars()
        elif not (isinstance(parameters_or_coordsys, tuple) or isinstance(parameters_or_coordsys, Tuple)):
            parameters = (parameters_or_coordsys,)
        else:
            parameters = parameters_or_coordsys

        if not (isinstance(definition, tuple) or isinstance(definition, Tuple)):
            definition = (definition,)

        if limits is None:
            limits = {}

        for parameter, bounds in limits.items():
            if parameter not in parameters:
                raise ValueError("%s is not listed in parameter tuple" % parameter)
            if len(bounds) != 2:
                raise ValueError("Bounds should be in the form (lower_bound, upper_bound)")

        obj = super().__new__(cls, Tuple(*parameters), Tuple(*definition), Dict(limits))
        return obj
Esempio n. 12
0
def gcd_terms(terms, isprimitive=False, clear=True, fraction=True):
    """Compute the GCD of ``terms`` and put them together.

    ``terms`` can be an expression or a non-Basic sequence of expressions
    which will be handled as though they are terms from a sum.

    If ``isprimitive`` is True the _gcd_terms will not run the primitive
    method on the terms.

    ``clear`` controls the removal of integers from the denominator of an Add
    expression. When True (default), all numerical denominator will be cleared;
    when False the denominators will be cleared only if all terms had numerical
    denominators other than 1.

    ``fraction``, when True (default), will put the expression over a common
    denominator.

    Examples
    ========

    >>> from sympy.core import gcd_terms
    >>> from sympy.abc import x, y

    >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
    y*(x + 1)*(x + y + 1)
    >>> gcd_terms(x/2 + 1)
    (x + 2)/2
    >>> gcd_terms(x/2 + 1, clear=False)
    x/2 + 1
    >>> gcd_terms(x/2 + y/2, clear=False)
    (x + y)/2
    >>> gcd_terms(x/2 + 1/x)
    (x**2 + 2)/(2*x)
    >>> gcd_terms(x/2 + 1/x, fraction=False)
    (x + 2/x)/2
    >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
    x/2 + 1/x

    >>> gcd_terms(x/2/y + 1/x/y)
    (x**2 + 2)/(2*x*y)
    >>> gcd_terms(x/2/y + 1/x/y, fraction=False, clear=False)
    (x + 2/x)/(2*y)

    See Also
    ========
    factor_terms, sympy.polys.polytools.terms_gcd

    """
    def mask(terms):
        """replace nc portions of each term with a unique Dummy symbols
        and return the replacements to restore them"""
        args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms]
        reps = []
        for i, (c, nc) in enumerate(args):
            if nc:
                nc = Mul._from_args(nc)
                d = Dummy()
                reps.append((d, nc))
                c.append(d)
                args[i] = Mul._from_args(c)
            else:
                args[i] = c
        return args, dict(reps)

    isadd = isinstance(terms, Add)
    addlike = isadd or not isinstance(terms, Basic) and \
        is_sequence(terms, include=set) and \
        not isinstance(terms, Dict)

    if addlike:
        if isadd:  # i.e. an Add
            terms = list(terms.args)
        else:
            terms = sympify(terms)
        terms, reps = mask(terms)
        cont, numer, denom = _gcd_terms(terms, isprimitive, fraction)
        numer = numer.xreplace(reps)
        coeff, factors = cont.as_coeff_Mul()
        return _keep_coeff(coeff, factors*numer/denom, clear=clear)

    if not isinstance(terms, Basic):
        return terms

    if terms.is_Atom:
        return terms

    if terms.is_Mul:
        c, args = terms.as_coeff_mul()
        return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction)
            for i in args]), clear=clear)

    def handle(a):
        # don't treat internal args like terms of an Add
        if not isinstance(a, Expr):
            if isinstance(a, Basic):
                return a.func(*[handle(i) for i in a.args])
            return type(a)([handle(i) for i in a])
        return gcd_terms(a, isprimitive, clear, fraction)

    if isinstance(terms, Dict):
        return Dict(*[(k, handle(v)) for k, v in terms.args])
    return terms.func(*[handle(i) for i in terms.args])
Esempio n. 13
0
def test_sympy__core__containers__Dict():
    from sympy.core.containers import Dict
    assert _test_args(Dict({x: y, y: z}))
Esempio n. 14
0
def test_diagram():
    A = Object("A")
    B = Object("B")
    C = Object("C")

    f = NamedMorphism(A, B, "f")
    g = NamedMorphism(B, C, "g")
    id_A = IdentityMorphism(A)
    id_B = IdentityMorphism(B)

    empty = EmptySet

    # Test the addition of identities.
    d1 = Diagram([f])

    assert d1.objects == FiniteSet(A, B)
    assert d1.hom(A, B) == (FiniteSet(f), empty)
    assert d1.hom(A, A) == (FiniteSet(id_A), empty)
    assert d1.hom(B, B) == (FiniteSet(id_B), empty)

    assert d1 == Diagram([id_A, f])
    assert d1 == Diagram([f, f])

    # Test the addition of composites.
    d2 = Diagram([f, g])
    homAC = d2.hom(A, C)[0]

    assert d2.objects == FiniteSet(A, B, C)
    assert g * f in d2.premises.keys()
    assert homAC == FiniteSet(g * f)

    # Test equality, inequality and hash.
    d11 = Diagram([f])

    assert d1 == d11
    assert d1 != d2
    assert hash(d1) == hash(d11)

    d11 = Diagram({f: "unique"})
    assert d1 != d11

    # Make sure that (re-)adding composites (with new properties)
    # works as expected.
    d = Diagram([f, g], {g * f: "unique"})
    assert d.conclusions == Dict({g * f: FiniteSet("unique")})

    # Check the hom-sets when there are premises and conclusions.
    assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
    d = Diagram([f, g], [g * f])
    assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))

    # Check how the properties of composite morphisms are computed.
    d = Diagram({f: ["unique", "isomorphism"], g: "unique"})
    assert d.premises[g * f] == FiniteSet("unique")

    # Check that conclusion morphisms with new objects are not allowed.
    d = Diagram([f], [g])
    assert d.conclusions == Dict({})

    # Test an empty diagram.
    d = Diagram()
    assert d.premises == Dict({})
    assert d.conclusions == Dict({})
    assert d.objects == empty

    # Check a SymPy Dict object.
    d = Diagram(Dict({f: FiniteSet("unique", "isomorphism"), g: "unique"}))
    assert d.premises[g * f] == FiniteSet("unique")

    # Check the addition of components of composite morphisms.
    d = Diagram([g * f])
    assert f in d.premises
    assert g in d.premises

    # Check subdiagrams.
    d = Diagram([f, g], {g * f: "unique"})

    d1 = Diagram([f])
    assert d.is_subdiagram(d1)
    assert not d1.is_subdiagram(d)

    d = Diagram([NamedMorphism(B, A, "f'")])
    assert not d.is_subdiagram(d1)
    assert not d1.is_subdiagram(d)

    d1 = Diagram([f, g], {g * f: ["unique", "something"]})
    assert not d.is_subdiagram(d1)
    assert not d1.is_subdiagram(d)

    d = Diagram({f: "blooh"})
    d1 = Diagram({f: "bleeh"})
    assert not d.is_subdiagram(d1)
    assert not d1.is_subdiagram(d)

    d = Diagram([f, g], {f: "unique", g * f: "veryunique"})
    d1 = d.subdiagram_from_objects(FiniteSet(A, B))
    assert d1 == Diagram([f], {f: "unique"})
    raises(ValueError,
           lambda: d.subdiagram_from_objects(FiniteSet(A, Object("D"))))

    raises(ValueError, lambda: Diagram({IdentityMorphism(A): "unique"}))
Esempio n. 15
0
    def __new__(cls, *args, **kwargs):
        """
        Create a new dimension.

        Possibilities are (examples given with list/tuple work also with
        tuple/list):

            >>> from sympy.physics.unitsystems.dimensions import Dimension
            >>> Dimension(length=1)
            {'length': 1}
            >>> Dimension({"length": 1})
            {'length': 1}
            >>> Dimension([("length", 1), ("time", -1)])  #doctest: +SKIP
            {'length': 1, 'time': -1}

        """

        # before setting the dict, check if a name and/or a symbol are defined
        # if so, remove them from the dict
        name = kwargs.pop('name', None)
        symbol = kwargs.pop('symbol', None)

        # pairs of (dimension, power)
        pairs = []

        # add first items from args to the pairs
        for arg in args:
            # construction with {"length": 1}
            if isinstance(arg, dict):
                arg = copy(arg)
                pairs.extend(arg.items())
            elif isinstance(arg, (Tuple, tuple, list)):
                #TODO: add construction with ("length", 1); not trivial because
                #      e.g. [("length", 1), ("time", -1)] has also length = 2

                for p in arg:
                    #TODO: check that p is a tuple
                    if len(p) != 2:
                        raise ValueError("Length of iterable has to be 2; "
                                         "'%d' found" % len(p))

                # construction with [("length", 1), ...]
                pairs.extend(arg)
            else:
                # error if the arg is not of previous types
                raise TypeError("Positional arguments can only be: "
                                "dict, tuple, list; '%s' found" % type(arg))

        pairs.extend(kwargs.items())

        # check validity of dimension key and power
        for pair in pairs:
            #if not isinstance(p[0], str):
            #    raise TypeError("key %s is not a string." % p[0])
            if not isinstance(pair[1], (numbers.Real, Number)):
                raise TypeError("Power corresponding to '%s' is not a number" %
                                pair[0])

        # filter dimensions set to zero; this avoid the following odd result:
        # Dimension(length=1) == Dimension(length=1, mass=0) => False
        # also simplify to avoid powers such as 2.00000
        pairs = [(pair[0], nsimplify(pair[1])) for pair in pairs
                 if pair[1] != 0]
        pairs.sort(key=str)

        new = Expr.__new__(cls, Dict(*pairs))
        new.name = name
        new.symbol = symbol

        new._dict = dict(pairs)

        return new
Esempio n. 16
0
 def density(self):
     return Dict(self._density)
Esempio n. 17
0
 def parse_dict(d):
     return Dict({parse_dim_name(i): j for i, j in d.items()})
Esempio n. 18
0
    def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}):
        dimensional_dependencies = dict(dimensional_dependencies)

        def parse_dim(dim):
            if isinstance(dim, str):
                dim = Dimension(Symbol(dim))
            elif isinstance(dim, Dimension):
                pass
            elif isinstance(dim, Symbol):
                dim = Dimension(dim)
            else:
                raise TypeError("%s wrong type" % dim)
            return dim

        base_dims = [parse_dim(i) for i in base_dims]
        derived_dims = [parse_dim(i) for i in derived_dims]

        for dim in base_dims:
            dim = dim.name
            if (dim in dimensional_dependencies and
                (len(dimensional_dependencies[dim]) != 1
                 or dimensional_dependencies[dim].get(dim, None) != 1)):
                raise IndexError("Repeated value in base dimensions")
            dimensional_dependencies[dim] = Dict({dim: 1})

        def parse_dim_name(dim):
            if isinstance(dim, Dimension):
                return dim.name
            elif isinstance(dim, str):
                return Symbol(dim)
            elif isinstance(dim, Symbol):
                return dim
            else:
                raise TypeError("unrecognized type %s for %s" %
                                (type(dim), dim))

        for dim in dimensional_dependencies.keys():
            dim = parse_dim(dim)
            if (dim not in derived_dims) and (dim not in base_dims):
                derived_dims.append(dim)

        def parse_dict(d):
            return Dict({parse_dim_name(i): j for i, j in d.items()})

        # Make sure everything is a SymPy type:
        dimensional_dependencies = {
            parse_dim_name(i): parse_dict(j)
            for i, j in dimensional_dependencies.items()
        }

        for dim in derived_dims:
            if dim in base_dims:
                raise ValueError("Dimension %s both in base and derived" % dim)
            if dim.name not in dimensional_dependencies:
                # TODO: should this raise a warning?
                dimensional_dependencies[dim.name] = Dict({dim.name: 1})

        base_dims.sort(key=default_sort_key)
        derived_dims.sort(key=default_sort_key)

        base_dims = Tuple(*base_dims)
        derived_dims = Tuple(*derived_dims)
        dimensional_dependencies = Dict(
            {i: Dict(j)
             for i, j in dimensional_dependencies.items()})
        obj = Basic.__new__(cls, base_dims, derived_dims,
                            dimensional_dependencies)
        return obj
Esempio n. 19
0
def test_factorint():
    assert primefactors(123456) == [2, 3, 643]
    assert factorint(0) == {0: 1}
    assert factorint(1) == {}
    assert factorint(-1) == {-1: 1}
    assert factorint(-2) == {-1: 1, 2: 1}
    assert factorint(-16) == {-1: 1, 2: 4}
    assert factorint(2) == {2: 1}
    assert factorint(126) == {2: 1, 3: 2, 7: 1}
    assert factorint(123456) == {2: 6, 3: 1, 643: 1}
    assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
    assert factorint(64015937) == {7993: 1, 8009: 1}
    assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
    #issue 19683
    assert factorint(10**38 - 1) == {
        3: 2,
        11: 1,
        909090909090909091: 1,
        1111111111111111111: 1
    }
    #issue 17676
    assert factorint(28300421052393658575) == {
        3: 1,
        5: 2,
        11: 2,
        43: 1,
        2063: 2,
        4127: 1,
        4129: 1
    }
    assert factorint(2063**2 * 4127**1 * 4129**1) == {
        2063: 2,
        4127: 1,
        4129: 1
    }
    assert factorint(2347**2 * 7039**1 * 7043**1) == {
        2347: 2,
        7039: 1,
        7043: 1
    }

    assert factorint(0, multiple=True) == [0]
    assert factorint(1, multiple=True) == []
    assert factorint(-1, multiple=True) == [-1]
    assert factorint(-2, multiple=True) == [-1, 2]
    assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
    assert factorint(2, multiple=True) == [2]
    assert factorint(24, multiple=True) == [2, 2, 2, 3]
    assert factorint(126, multiple=True) == [2, 3, 3, 7]
    assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
    assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
    assert factorint(64015937, multiple=True) == [7993, 8009]
    assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]

    assert factorint(fac(1, evaluate=False)) == {}
    assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
    assert factorint(fac(15, evaluate=False)) == \
        {2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
    assert factorint(fac(20, evaluate=False)) == \
        {2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
    assert factorint(fac(23, evaluate=False)) == \
        {2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}

    assert multiproduct(factorint(fac(200))) == fac(200)
    assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
    for b, e in factorint(fac(150)).items():
        assert e == fac_multiplicity(150, b)
    for b, e in factorint(fac(150, evaluate=False)).items():
        assert e == fac_multiplicity(150, b)
    assert factorint(103005006059**7) == {103005006059: 7}
    assert factorint(31337**191) == {31337: 191}
    assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
        {2: 1000, 3: 500, 257: 127, 383: 60}
    assert len(factorint(fac(10000))) == 1229
    assert len(factorint(fac(10000, evaluate=False))) == 1229
    assert factorint(12932983746293756928584532764589230) == \
        {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
    assert factorint(727719592270351) == {727719592270351: 1}
    assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
    for n in range(60000):
        assert multiproduct(factorint(n)) == n
    assert pollard_rho(2**64 + 1, seed=1) == 274177
    assert pollard_rho(19, seed=1) is None
    assert factorint(3, limit=2) == {3: 1}
    assert factorint(12345) == {3: 1, 5: 1, 823: 1}
    assert factorint(12345, limit=3) == {
        4115: 1,
        3: 1
    }  # the 5 is greater than the limit
    assert factorint(1, limit=1) == {}
    assert factorint(0, 3) == {0: 1}
    assert factorint(12, limit=1) == {12: 1}
    assert factorint(30, limit=2) == {2: 1, 15: 1}
    assert factorint(16, limit=2) == {2: 4}
    assert factorint(124, limit=3) == {2: 2, 31: 1}
    assert factorint(4 * 31**2, limit=3) == {2: 2, 31: 2}
    p1 = nextprime(2**32)
    p2 = nextprime(2**16)
    p3 = nextprime(p2)
    assert factorint(p1 * p2 * p3) == {p1: 1, p2: 1, p3: 1}
    assert factorint(13 * 17 * 19, limit=15) == {13: 1, 17 * 19: 1}
    assert factorint(1951 * 15013 * 15053, limit=2000) == {
        225990689: 1,
        1951: 1
    }
    assert factorint(primorial(17) + 1, use_pm1=0) == \
        {int(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
    # when prime b is closer than approx sqrt(8*p) to prime p then they are
    # "close" and have a trivial factorization
    a = nextprime(2**2**8)  # 78 digits
    b = nextprime(a + 2**2**4)
    assert 'Fermat' in capture(lambda: factorint(a * b, verbose=1))

    raises(ValueError, lambda: pollard_rho(4))
    raises(ValueError, lambda: pollard_pm1(3))
    raises(ValueError, lambda: pollard_pm1(10, B=2))
    # verbose coverage
    n = nextprime(2**16) * nextprime(2**17) * nextprime(1901)
    assert 'with primes' in capture(lambda: factorint(n, verbose=1))
    capture(lambda: factorint(nextprime(2**16) * 1012, verbose=1))

    n = nextprime(2**17)
    capture(lambda: factorint(n**3, verbose=1))  # perfect power termination
    capture(lambda: factorint(2 * n, verbose=1))  # factoring complete msg

    # exceed 1st
    n = nextprime(2**17)
    n *= nextprime(n)
    assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
    n *= nextprime(n)
    assert len(factorint(n)) == 3
    assert len(factorint(n, limit=p1)) == 3
    n *= nextprime(2 * n)
    # exceed 2nd
    assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
    assert capture(lambda: factorint(n, limit=4000, verbose=1)).count(
        'Pollard') == 2
    # non-prime pm1 result
    n = nextprime(8069)
    n *= nextprime(2 * n) * nextprime(2 * n, 2)
    capture(lambda: factorint(n, verbose=1))  # non-prime pm1 result
    # factor fermat composite
    p1 = nextprime(2**17)
    p2 = nextprime(2 * p1)
    assert factorint((p1 * p2**2)**3) == {p1: 3, p2: 6}
    # Test for non integer input
    raises(ValueError, lambda: factorint(4.5))
    # test dict/Dict input
    sans = '2**10*3**3'
    n = {4: 2, 12: 3}
    assert str(factorint(n)) == sans
    assert str(factorint(Dict(n))) == sans
Esempio n. 20
0
 def dict(self):
     return FiniteSet(*[Dict(dict(el)) for el in self.elements])
Esempio n. 21
0
def test_ndim_array_initiation():
    arr_with_no_elements = ImmutableDenseNDimArray([], shape=(0, ))
    assert len(arr_with_no_elements) == 0
    assert arr_with_no_elements.rank() == 1

    raises(ValueError, lambda: ImmutableDenseNDimArray([0], shape=(0, )))
    raises(ValueError, lambda: ImmutableDenseNDimArray([1, 2, 3], shape=(0, )))
    raises(ValueError, lambda: ImmutableDenseNDimArray([], shape=()))

    raises(ValueError, lambda: ImmutableSparseNDimArray([0], shape=(0, )))
    raises(ValueError,
           lambda: ImmutableSparseNDimArray([1, 2, 3], shape=(0, )))
    raises(ValueError, lambda: ImmutableSparseNDimArray([], shape=()))

    arr_with_one_element = ImmutableDenseNDimArray([23])
    assert len(arr_with_one_element) == 1
    assert arr_with_one_element[0] == 23
    assert arr_with_one_element[:] == ImmutableDenseNDimArray([23])
    assert arr_with_one_element.rank() == 1

    arr_with_symbol_element = ImmutableDenseNDimArray([Symbol('x')])
    assert len(arr_with_symbol_element) == 1
    assert arr_with_symbol_element[0] == Symbol('x')
    assert arr_with_symbol_element[:] == ImmutableDenseNDimArray([Symbol('x')])
    assert arr_with_symbol_element.rank() == 1

    number5 = 5
    vector = ImmutableDenseNDimArray.zeros(number5)
    assert len(vector) == number5
    assert vector.shape == (number5, )
    assert vector.rank() == 1

    vector = ImmutableSparseNDimArray.zeros(number5)
    assert len(vector) == number5
    assert vector.shape == (number5, )
    assert vector._sparse_array == Dict()
    assert vector.rank() == 1

    n_dim_array = ImmutableDenseNDimArray(range(3**4), (
        3,
        3,
        3,
        3,
    ))
    assert len(n_dim_array) == 3 * 3 * 3 * 3
    assert n_dim_array.shape == (3, 3, 3, 3)
    assert n_dim_array.rank() == 4

    array_shape = (3, 3, 3, 3)
    sparse_array = ImmutableSparseNDimArray.zeros(*array_shape)
    assert len(sparse_array._sparse_array) == 0
    assert len(sparse_array) == 3 * 3 * 3 * 3
    assert n_dim_array.shape == array_shape
    assert n_dim_array.rank() == 4

    one_dim_array = ImmutableDenseNDimArray([2, 3, 1])
    assert len(one_dim_array) == 3
    assert one_dim_array.shape == (3, )
    assert one_dim_array.rank() == 1
    assert one_dim_array.tolist() == [2, 3, 1]

    shape = (3, 3)
    array_with_many_args = ImmutableSparseNDimArray.zeros(*shape)
    assert len(array_with_many_args) == 3 * 3
    assert array_with_many_args.shape == shape
    assert array_with_many_args[0, 0] == 0
    assert array_with_many_args.rank() == 2

    shape = (int(3), int(3))
    array_with_long_shape = ImmutableSparseNDimArray.zeros(*shape)
    assert len(array_with_long_shape) == 3 * 3
    assert array_with_long_shape.shape == shape
    assert array_with_long_shape[int(0), int(0)] == 0
    assert array_with_long_shape.rank() == 2

    vector_with_long_shape = ImmutableDenseNDimArray(range(5), int(5))
    assert len(vector_with_long_shape) == 5
    assert vector_with_long_shape.shape == (int(5), )
    assert vector_with_long_shape.rank() == 1
    raises(ValueError, lambda: vector_with_long_shape[int(5)])

    from sympy.abc import x
    for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]:
        rank_zero_array = ArrayType(x)
        assert len(rank_zero_array) == 1
        assert rank_zero_array.shape == ()
        assert rank_zero_array.rank() == 0
        assert rank_zero_array[()] == x
        raises(ValueError, lambda: rank_zero_array[0])