Esempio n. 1
0
    def __new__(cls, *args, **assumptions):
        if not args:
            raise ValueError("The Max/Min functions must have arguments.")

        args = (sympify(arg) for arg in args)

        # first standard filter, for cls.zero and cls.identity
        # also reshape Max(a, Max(b, c)) to Max(a, b, c)
        try:
            _args = frozenset(cls._new_args_filter(args))
        except ShortCircuit:
            return cls.zero

        # second filter
        # variant I: remove ones which can be removed
        # args = cls._collapse_arguments(set(_args), **assumptions)

        # variant II: find local zeros
        args = cls._find_localzeros(set(_args), **assumptions)

        _args = frozenset(args)

        if not _args:
            return cls.identity
        elif len(_args) == 1:
            return set(_args).pop()
        else:
            # base creation
            obj = Expr.__new__(cls, _args, **assumptions)
            obj._argset = _args
            return obj
Esempio n. 2
0
    def __new__(cls, function, *symbols, **assumptions):
        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        #
        # This constructor only differs from ExprWithLimits
        # in the application of the orientation variable.  Perhaps merge?
        function = piecewise_fold(sympify(function))

        if function is S.NaN:
            return S.NaN

        if symbols:
            limits, orientation = _process_limits(*symbols)
        else:
            # symbol not provided -- we can still try to compute a general form
            free = function.free_symbols
            if len(free) != 1:
                raise ValueError(
                    "specify dummy variables for %s" % function)
            limits, orientation = [Tuple(s) for s in free], 1

        # denest any nested calls
        while cls == type(function):
            limits = list(function.limits) + limits
            function = function.function

        obj = Expr.__new__(cls, **assumptions)
        arglist = [orientation*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 3
0
    def __new__(cls, *args, **assumptions):
        evaluate = assumptions.pop('evaluate', True)
        args = (sympify(arg) for arg in args)

        # first standard filter, for cls.zero and cls.identity
        # also reshape Max(a, Max(b, c)) to Max(a, b, c)

        if evaluate:
            try:
                args = frozenset(cls._new_args_filter(args))
            except ShortCircuit:
                return cls.zero
        else:
            args = frozenset(args)

        if evaluate:
            # remove redundant args that are easily identified
            args = cls._collapse_arguments(args, **assumptions)
            # find local zeros
            args = cls._find_localzeros(args, **assumptions)

        if not args:
            return cls.identity

        if len(args) == 1:
            return list(args).pop()

        # base creation
        _args = frozenset(args)
        obj = Expr.__new__(cls, _args, **assumptions)
        obj._argset = _args
        return obj
Esempio n. 4
0
 def __new__(cls):
     from sympy.core.sets import FiniteSet
     x = C.Dummy('x')
     #construct "by hand" to avoid infinite loop
     obj = Expr.__new__(cls, Tuple(x), x)
     obj.nargs = FiniteSet(1)
     return obj
Esempio n. 5
0
    def __new__(cls, f, limits, exprs):
        if not (type(exprs) == tuple and len(exprs) == 3):  # exprs is not of form (a0, an, bn)
            # Converts the expression to fourier form
            c, e = exprs.as_coeff_add()
            rexpr = c + Add(*[TR10(i) for i in e])
            a0, exp_ls = rexpr.expand(trig=False, power_base=False, power_exp=False, log=False).as_coeff_add()

            x = limits[0]
            L = abs(limits[2] - limits[1]) / 2

            a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k is not S.Zero, ])
            b = Wild('b', properties=[lambda k: x not in k.free_symbols, ])

            an = dict()
            bn = dict()

            # separates the coefficients of sin and cos terms in dictionaries an, and bn
            for p in exp_ls:
                t = p.match(b * cos(a * (pi / L) * x))
                q = p.match(b * sin(a * (pi / L) * x))
                if t:
                    an[t[a]] = t[b] + an.get(t[a], S.Zero)
                elif q:
                    bn[q[a]] = q[b] + bn.get(q[a], S.Zero)
                else:
                    a0 += p

            exprs = (a0, an, bn)

        args = map(sympify, (f, limits, exprs))

        return Expr.__new__(cls, *args)
Esempio n. 6
0
    def __new__(cls, function, *symbols, **assumptions):
        from sympy.integrals.integrals import _process_limits

        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        function = piecewise_fold(sympify(function))

        if function is S.NaN:
            return S.NaN

        if not symbols:
            raise ValueError("Summation variables must be given")

        limits, sign = _process_limits(*symbols)

        # Only limits with lower and upper bounds are supported; the indefinite Sum
        # is not supported
        if any(len(l) != 3 or None in l for l in limits):
            raise ValueError('Sum requires values for lower and upper bounds.')

        obj = Expr.__new__(cls, **assumptions)
        arglist = [sign*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 7
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Esempio n. 8
0
 def __new__(cls, expr1, expr2):
     if not (isinstance(expr1, Vector) and isinstance(expr2, Vector)):
         raise ValueError('Arguments must be the vectors.')
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Esempio n. 9
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     if default_sort_key(expr1) > default_sort_key(expr2):
         return -Cross(expr2, expr1)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Esempio n. 10
0
    def _from_args(cls, args, is_commutative=None):
        """Create new instance with already-processed args"""
        if len(args) == 0:
            return cls.identity
        elif len(args) == 1:
            return args[0]

        obj = Expr.__new__(cls, *args)
        if is_commutative is None:
            is_commutative = fuzzy_and(a.is_commutative for a in args)
        obj.is_commutative = is_commutative
        return obj
Esempio n. 11
0
    def __new__(cls, function, *symbols, **assumptions):
        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        #
        # This constructor only differs from ExprWithLimits
        # in the application of the orientation variable.  Perhaps merge?
        function = piecewise_fold(sympify(function))

        if function is S.NaN:
            return S.NaN

        # delete dx, dy, dx, etc.
        free = function.free_symbols
        for f in free:
            if len(f.name) > 1 and f.name[0] == "d":
                function = function.subs(f, 1)

        if symbols:
            limits, orientation = _process_limits(*symbols)
        else:
            # symbol not provided -- we can still try to compute a general form
            new_free = set()
            limits = []
            # if f is dx, then the variable is x
            for f in free:
                if len(f.name) > 1 and f.name[0] == "d":
                    limits.append((Symbol(f.name[1:]),))
                else:
                    new_free.add(f)
            free = new_free
            del new_free
            if len(limits) == 0:
                if len(free) != 1:
                    raise ValueError(
                        "specify dummy variables for %s" % function)
                limits = [Tuple(s) for s in free]
            orientation = 1

        # denest any nested calls
        while cls == type(function):
            limits = list(function.limits) + limits
            function = function.function

        obj = Expr.__new__(cls, **assumptions)
        arglist = [orientation*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 12
0
 def __new__(cls, *args, **options):
     args = (sympify(arg) for arg in args)
     try:
         _args = frozenset(cls._new_args_filter(args))
     except ShortCircuit:
         return cls.zero
     if not _args:
         return cls.identity
     elif len(_args) == 1:
         return set(_args).pop()
     else:
         obj = Expr.__new__(cls, _args)
         obj._argset = _args
         return obj
Esempio n. 13
0
    def __new__(cls, name, symbol=None):

        if isinstance(name, string_types):
            name = Symbol(name)
        else:
            name = sympify(name)

        if not isinstance(name, Expr):
            raise TypeError("Dimension name needs to be a valid math expression")

        if isinstance(symbol, string_types):
            symbol = Symbol(symbol)
        elif symbol is not None:
            assert isinstance(symbol, Symbol)

        if symbol is not None:
            obj = Expr.__new__(cls, name, symbol)
        else:
            obj = Expr.__new__(cls, name)

        obj._name = name
        obj._symbol = symbol
        return obj
Esempio n. 14
0
    def __new__(cls, function, *symbols, **assumptions):
        pre = _common_new(cls, function, *symbols, **assumptions)
        if type(pre) is tuple:
            function, limits, orientation = pre
        else:
            return pre

        obj = Expr.__new__(cls, **assumptions)
        arglist = [orientation*function]  # orientation not used in ExprWithLimits
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 15
0
    def __new__(cls, a=0, b=0, c=0, d=0, real_field = True):
        a = sympify(a)
        b = sympify(b)
        c = sympify(c)
        d = sympify(d)

        if any(i.is_commutative is False for i in [a, b, c, d]):
            raise ValueError("arguments have to be commutative")
        else:
            obj = Expr.__new__(cls, a, b, c, d)
            obj._a = a
            obj._b = b
            obj._c = c
            obj._d = d
            obj._real_field = real_field
            return obj
Esempio n. 16
0
    def __new__(cls, function, *symbols, **assumptions):
        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        #
        # This constructor only differs from ExprWithLimits
        # in the application of the orientation variable.  Perhaps merge?
        function = sympify(function)
        if hasattr(function, 'func') and function.func is Equality:
            lhs = function.lhs
            rhs = function.rhs
            return Equality(cls(lhs, *symbols, **assumptions), \
                cls(rhs, *symbols, **assumptions))
        function = piecewise_fold(function)

        if function is S.NaN:
            return S.NaN

        if symbols:
            limits, orientation = _process_limits(*symbols)
        else:
            # symbol not provided -- we can still try to compute a general form
            free = function.free_symbols
            if len(free) != 1:
                raise ValueError(
                    " specify dummy variables for %s. If the integrand contains"
                    " more than one free symbol, an integration variable should"
                    " be supplied explicitly e.g., integrate(f(x, y), x)"
                    % function)
            limits, orientation = [Tuple(s) for s in free], 1

        # denest any nested calls
        while cls == type(function):
            limits = list(function.limits) + limits
            function = function.function

        obj = Expr.__new__(cls, **assumptions)
        arglist = [orientation*function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 17
0
    def __new__(cls, function, *symbols, **assumptions):
        pre = _common_new(cls, function, *symbols, **assumptions)
        if type(pre) is tuple:
            function, limits, _ = pre
        else:
            return pre

        # limits must have upper and lower bounds; the indefinite form
        # is not supported. This restriction does not apply to AddWithLimits
        if any(len(l) != 3 or None in l for l in limits):
            raise ValueError('ExprWithLimits requires values for lower and upper bounds.')

        obj = Expr.__new__(cls, **assumptions)
        arglist = [function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 18
0
    def __new__(cls, function, *symbols, **assumptions):
        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        function = sympify(function)
        if hasattr(function, 'func') and function.func is C.Equality:
            lhs = function.lhs
            rhs = function.rhs
            return C.Equality(cls(lhs, *symbols, **assumptions), \
                cls(rhs, *symbols, **assumptions))
        function = piecewise_fold(function)

        if function is S.NaN:
            return S.NaN

        if symbols:
            limits, orientation = _process_limits(*symbols)
        else:
            # symbol not provided -- we can still try to compute a general form
            free = function.free_symbols
            if len(free) != 1:
                raise ValueError(
                    "specify dummy variables for %s" % function)
            limits, orientation = [Tuple(s) for s in free], 1

        # denest any nested calls
        while cls == type(function):
            limits = list(function.limits) + limits
            function = function.function

        # Only limits with lower and upper bounds are supported; the indefinite form
        # is not supported
        if any(len(l) != 3 or None in l for l in limits):
            raise ValueError('ExprWithLimits requires values for lower and upper bounds.')

        obj = Expr.__new__(cls, **assumptions)
        arglist = [function]
        arglist.extend(limits)
        obj._args = tuple(arglist)
        obj.is_commutative = function.is_commutative  # limits already checked

        return obj
Esempio n. 19
0
 def __new__(cls, expr):
     expr = sympify(expr)
     obj = Expr.__new__(cls, expr)
     obj._expr = expr
     return obj
Esempio n. 20
0
 def __new__(cls):
     x = Dummy('x')
     #construct "by hand" to avoid infinite loop
     return Expr.__new__(cls, Tuple(x), x)
Esempio n. 21
0
 def __new__(cls, *args):
     args = map(sympify, args)
     return Expr.__new__(cls, *args)
Esempio n. 22
0
 def __new__(cls, *args):
     args = map(sympify, args)
     return Expr.__new__(cls, *args)
Esempio n. 23
0
 def __new__(cls, x):
     return Expr.__new__(cls, x)
Esempio n. 24
0
 def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
     args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
     return Expr.__new__(cls, *args)
Esempio n. 25
0
 def __new__(cls):
     from sympy.sets.sets import FiniteSet
     x = Dummy('x')
     #construct "by hand" to avoid infinite loop
     return Expr.__new__(cls, Tuple(x), x)
Esempio n. 26
0
 def __new__(cls, expr):
     expr = sympify(expr)
     obj = Expr.__new__(cls, expr)
     obj._expr = expr
     return obj
Esempio n. 27
0
 def __new__(cls):
     obj = Expr.__new__(cls)
     obj.p = -1
     return obj
Esempio n. 28
0
 def __new__(cls, j1, j2, j12, j3, j, j23):
     args = map(sympify, (j1, j2, j12, j3, j, j23))
     return Expr.__new__(cls, *args)
Esempio n. 29
0
 def __new__(cls):
     x = C.Dummy('x')
     #construct "by hand" to avoid infinite loop
     return Expr.__new__(cls, Tuple(x), x)
Esempio n. 30
0
 def __new__(cls, A, B):
     r = cls.eval(A, B)
     if r is not None:
         return r
     obj = Expr.__new__(cls, A, B)
     return obj
Esempio n. 31
0
 def __new__(cls):
     obj = Expr.__new__(cls)
     obj.p = -1
     return obj
Esempio n. 32
0
 def __new__(cls, j1, m1, j2, m2, j3, m3):
     args = map(sympify, (j1, m1, j2, m2, j3, m3))
     return Expr.__new__(cls, *args)