Esempio n. 1
0
def test_AlgebraicField_integral_basis():
    alpha = AlgebraicNumber(sqrt(5), alias='alpha')
    k = QQ.algebraic_field(alpha)
    B0 = k.integral_basis()
    B1 = k.integral_basis(fmt='sympy')
    B2 = k.integral_basis(fmt='alg')
    assert B0 == [k([1]), k([S.Half, S.Half])]
    assert B1 == [1, S.Half + alpha/2]
    assert B2 == [alpha.field_element([1]),
                  alpha.field_element([S.Half, S.Half])]
Esempio n. 2
0
def test_to_number_field():
    assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2))
    assert to_number_field(
        [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3))

    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero])

    assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a
    assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a

    raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3)))
Esempio n. 3
0
def test_AlgebraicNumber():
    a = AlgebraicNumber(sqrt(2))
    sT(
        a,
        "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])"
    )
    a = AlgebraicNumber(root(-2, 3))
    sT(
        a,
        "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])"
    )
Esempio n. 4
0
def test_evalf_real_alg_num():
    # This test demonstrates why the entry for `AlgebraicNumber` in
    # `sympy.core.evalf._create_evalf_table()` has to use `x.to_root()`,
    # instead of `x.as_expr()`. If the latter is used, then `z` will be
    # a complex number with `0.e-20` for imaginary part, even though `a5`
    # is a real number.
    zeta = Symbol('zeta')
    a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), [-1, -1, 0, 0],
                         alias=zeta)
    z = a5.evalf()
    assert isinstance(z, Float)
    assert not hasattr(z, '_mpc_')
    assert hasattr(z, '_mpf_')
Esempio n. 5
0
def test_field_isomorphism_pslq():
    a = AlgebraicNumber(I)
    b = AlgebraicNumber(I * sqrt(3))

    raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b))

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))
    c = AlgebraicNumber(sqrt(7))
    d = AlgebraicNumber(sqrt(2) + sqrt(3))
    e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7))

    assert field_isomorphism_pslq(a, a) == [1, 0]
    assert field_isomorphism_pslq(a, b) is None
    assert field_isomorphism_pslq(a, c) is None
    assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0]
    assert field_isomorphism_pslq(
        a, e) == [Q(1, 80), 0, -Q(1, 2), 0,
                  Q(59, 20), 0]

    assert field_isomorphism_pslq(b, a) is None
    assert field_isomorphism_pslq(b, b) == [1, 0]
    assert field_isomorphism_pslq(b, c) is None
    assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0]
    assert field_isomorphism_pslq(b, e) == [
        -Q(3, 640), 0,
        Q(67, 320), 0, -Q(297, 160), 0,
        Q(313, 80), 0
    ]

    assert field_isomorphism_pslq(c, a) is None
    assert field_isomorphism_pslq(c, b) is None
    assert field_isomorphism_pslq(c, c) == [1, 0]
    assert field_isomorphism_pslq(c, d) is None
    assert field_isomorphism_pslq(c, e) == [
        Q(3, 640), 0, -Q(71, 320), 0,
        Q(377, 160), 0, -Q(469, 80), 0
    ]

    assert field_isomorphism_pslq(d, a) is None
    assert field_isomorphism_pslq(d, b) is None
    assert field_isomorphism_pslq(d, c) is None
    assert field_isomorphism_pslq(d, d) == [1, 0]
    assert field_isomorphism_pslq(d, e) == [
        -Q(3, 640), 0,
        Q(71, 320), 0, -Q(377, 160), 0,
        Q(549, 80), 0
    ]

    assert field_isomorphism_pslq(e, a) is None
    assert field_isomorphism_pslq(e, b) is None
    assert field_isomorphism_pslq(e, c) is None
    assert field_isomorphism_pslq(e, d) is None
    assert field_isomorphism_pslq(e, e) == [1, 0]

    f = AlgebraicNumber(3 * sqrt(2) + 8 * sqrt(7) - 5)

    assert field_isomorphism_pslq(
        f, e) == [Q(3, 80), 0, -Q(139, 80), 0,
                  Q(347, 20), 0, -Q(761, 20), -5]
Esempio n. 6
0
def test_NumberKind():
    assert S.One.kind is NumberKind
    assert pi.kind is NumberKind
    assert S.NaN.kind is NumberKind
    assert zoo.kind is NumberKind
    assert I.kind is NumberKind
    assert AlgebraicNumber(1).kind is NumberKind
Esempio n. 7
0
def test_AlgebraicField_alias():
    # No default alias:
    k = QQ.algebraic_field(sqrt(2))
    assert k.ext.alias is None

    # For a single extension, its alias is used:
    alpha = AlgebraicNumber(sqrt(2), alias='alpha')
    k = QQ.algebraic_field(alpha)
    assert k.ext.alias.name == 'alpha'

    # Can override the alias of a single extension:
    k = QQ.algebraic_field(alpha, alias='theta')
    assert k.ext.alias.name == 'theta'

    # With multiple extensions, no default alias:
    k = QQ.algebraic_field(sqrt(2), sqrt(3))
    assert k.ext.alias is None

    # With multiple extensions, no default alias, even if one of
    # the extensions has one:
    k = QQ.algebraic_field(alpha, sqrt(3))
    assert k.ext.alias is None

    # With multiple extensions, may set an alias:
    k = QQ.algebraic_field(sqrt(2), sqrt(3), alias='theta')
    assert k.ext.alias.name == 'theta'

    # Alias is passed to constructed field elements:
    k = QQ.algebraic_field(alpha)
    beta = k.to_alg_num(k([1, 2, 3]))
    assert beta.alias is alpha.alias
Esempio n. 8
0
def test_AlgebraicNumber_to_root():
    assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2)

    zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0])
    assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1)

    zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0])
    assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2
    assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0)
Esempio n. 9
0
def test_to_algebraic_integer():
    a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 3
    assert a.root == sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer()
    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer()

    assert a.minpoly == x**2 - 12
    assert a.root == 2*sqrt(3)
    assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ)
Esempio n. 10
0
    def alg_field_from_poly(self, poly, alias=None, root_index=-1):
        r"""
        Convenience method to construct an algebraic extension on a root of a
        polynomial, chosen by root index.

        Parameters
        ==========

        poly : :py:class:`~.Poly`
            The polynomial whose root generates the extension.
        alias : str, optional (default=None)
            Symbol name for the generator of the extension.
            E.g. "alpha" or "theta".
        root_index : int, optional (default=-1)
            Specifies which root of the polynomial is desired. The ordering is
            as defined by the :py:class:`~.ComplexRootOf` class. The default of
            ``-1`` selects the most natural choice in the common cases of
            quadratic and cyclotomic fields (the square root on the positive
            real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).

        Examples
        ========

        >>> from sympy import QQ, Poly
        >>> from sympy.abc import x
        >>> f = Poly(x**2 - 2)
        >>> K = QQ.alg_field_from_poly(f)
        >>> K.ext.minpoly == f
        True
        >>> g = Poly(8*x**3 - 6*x - 1)
        >>> L = QQ.alg_field_from_poly(g, "alpha")
        >>> L.ext.minpoly == g
        True
        >>> L.to_sympy(L([1, 1, 1]))
        alpha**2 + alpha + 1

        """
        from sympy.polys.rootoftools import CRootOf
        root = CRootOf(poly, root_index)
        alpha = AlgebraicNumber(root, alias=alias)
        return self.algebraic_field(alpha)
Esempio n. 11
0
def test_field_isomorphism():
    assert field_isomorphism(3, sqrt(2)) == [3]

    assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0]
    assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0]

    assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0]
    assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0]

    assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0]
    assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0]

    assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0]
    assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0]

    assert field_isomorphism(
        2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27]
    assert field_isomorphism(
        -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27]

    assert field_isomorphism(
        2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27]
    assert field_isomorphism(
        -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27]

    p = AlgebraicNumber( sqrt(2) + sqrt(3))
    q = AlgebraicNumber(-sqrt(2) + sqrt(3))
    r = AlgebraicNumber( sqrt(2) - sqrt(3))
    s = AlgebraicNumber(-sqrt(2) - sqrt(3))

    pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero]
    neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero]

    a = AlgebraicNumber(sqrt(2))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_coeffs

    a = AlgebraicNumber(-sqrt(2))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == pos_coeffs
    assert field_isomorphism(a, r, fast=True) == neg_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == pos_coeffs
    assert field_isomorphism(a, r, fast=False) == neg_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero]
    neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero]

    a = AlgebraicNumber(sqrt(3))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    a = AlgebraicNumber(-sqrt(3))

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_coeffs
    assert field_isomorphism(a, q, fast=True) == pos_coeffs
    assert field_isomorphism(a, r, fast=True) == neg_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_coeffs
    assert field_isomorphism(a, q, fast=False) == pos_coeffs
    assert field_isomorphism(a, r, fast=False) == neg_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_coeffs

    pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)]
    neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)]

    a = AlgebraicNumber(3*sqrt(3) - 8)

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == neg_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_coeffs
    assert field_isomorphism(a, s, fast=True) == pos_coeffs

    assert field_isomorphism(a, p, fast=False) == neg_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_coeffs
    assert field_isomorphism(a, s, fast=False) == pos_coeffs

    a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1)

    pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One]
    neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One]
    pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One]
    neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One]

    assert is_isomorphism_possible(a, p) is True
    assert is_isomorphism_possible(a, q) is True
    assert is_isomorphism_possible(a, r) is True
    assert is_isomorphism_possible(a, s) is True

    assert field_isomorphism(a, p, fast=True) == pos_1_coeffs
    assert field_isomorphism(a, q, fast=True) == neg_5_coeffs
    assert field_isomorphism(a, r, fast=True) == pos_5_coeffs
    assert field_isomorphism(a, s, fast=True) == neg_1_coeffs

    assert field_isomorphism(a, p, fast=False) == pos_1_coeffs
    assert field_isomorphism(a, q, fast=False) == neg_5_coeffs
    assert field_isomorphism(a, r, fast=False) == pos_5_coeffs
    assert field_isomorphism(a, s, fast=False) == neg_1_coeffs

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))
    c = AlgebraicNumber(sqrt(7))

    assert is_isomorphism_possible(a, b) is True
    assert is_isomorphism_possible(b, a) is True

    assert is_isomorphism_possible(c, p) is False

    assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None
    assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None

    assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None
    assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(2 ** (S(1) / 3))

    assert is_isomorphism_possible(a, b) is False
    assert field_isomorphism(a, b) is None
Esempio n. 12
0
def test_core_numbers():
    for c in (Integer(2), Rational(2, 3), Float("1.2")):
        check(c)
    for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))):
        check(c, check_attr=False)
Esempio n. 13
0
def test_minimal_polynomial():
    assert minimal_polynomial(-7, x) == x + 7
    assert minimal_polynomial(-1, x) == x + 1
    assert minimal_polynomial(0, x) == x
    assert minimal_polynomial(1, x) == x - 1
    assert minimal_polynomial(7, x) == x - 7

    assert minimal_polynomial(sqrt(2), x) == x**2 - 2
    assert minimal_polynomial(sqrt(5), x) == x**2 - 5
    assert minimal_polynomial(sqrt(6), x) == x**2 - 6

    assert minimal_polynomial(2 * sqrt(2), x) == x**2 - 8
    assert minimal_polynomial(3 * sqrt(5), x) == x**2 - 45
    assert minimal_polynomial(4 * sqrt(6), x) == x**2 - 96

    assert minimal_polynomial(2 * sqrt(2) + 3, x) == x**2 - 6 * x + 1
    assert minimal_polynomial(3 * sqrt(5) + 6, x) == x**2 - 12 * x - 9
    assert minimal_polynomial(4 * sqrt(6) + 7, x) == x**2 - 14 * x - 47

    assert minimal_polynomial(2 * sqrt(2) - 3, x) == x**2 + 6 * x + 1
    assert minimal_polynomial(3 * sqrt(5) - 6, x) == x**2 + 12 * x - 9
    assert minimal_polynomial(4 * sqrt(6) - 7, x) == x**2 + 14 * x - 47

    assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2 * x**2 - 5
    assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10 * x**4 + 49

    assert minimal_polynomial(2 * I + sqrt(2 + I),
                              x) == x**4 + 4 * x**2 + 8 * x + 37

    assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10 * x**2 + 1
    assert minimal_polynomial(sqrt(2) + sqrt(3) + sqrt(6),
                              x) == x**4 - 22 * x**2 - 48 * x - 23

    a = 1 - 9 * sqrt(2) + 7 * sqrt(3)

    assert minimal_polynomial(
        1 / a, x) == 392 * x**4 - 1232 * x**3 + 612 * x**2 + 4 * x - 1
    assert minimal_polynomial(
        1 / sqrt(a), x) == 392 * x**8 - 1232 * x**6 + 612 * x**4 + 4 * x**2 - 1

    raises(NotAlgebraic, lambda: minimal_polynomial(oo, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x))
    raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x))

    assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x) == x**2 - 2

    assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2)
    assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2,
                                                              domain='QQ')
    assert minimal_polynomial(sqrt(2), x, polys=True,
                              compose=False) == Poly(x**2 - 2, domain='QQ')

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(3))

    assert minimal_polynomial(a, x) == x**2 - 2
    assert minimal_polynomial(b, x) == x**2 - 3

    assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2, domain='QQ')
    assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3, domain='QQ')

    assert minimal_polynomial(sqrt(a / 2 + 17),
                              x) == 2 * x**4 - 68 * x**2 + 577
    assert minimal_polynomial(sqrt(b / 2 + 17),
                              x) == 4 * x**4 - 136 * x**2 + 1153

    a, b = sqrt(2) / 3 + 7, AlgebraicNumber(sqrt(2) / 3 + 7)

    f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \
        31608*x**2 - 189648*x + 141358

    assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f
    assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f

    assert minimal_polynomial(a**Q(3, 2),
                              x) == 729 * x**4 - 506898 * x**2 + 84604519

    # issue 5994
    eq = S('''
        -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 +
        sqrt(15)*I/28800000)**(1/3)))''')
    assert minimal_polynomial(eq, x) == 8000 * x**2 - 1

    ex = (sqrt(5) * sqrt(I) / (5 * sqrt(1 + 125 * I)) + 25 * sqrt(5) /
          (I**Q(5, 2) * (1 + 125 * I)**Q(3, 2)) + 3125 * sqrt(5) /
          (I**Q(11, 2) * (1 + 125 * I)**Q(3, 2)) + 5 * I * sqrt(1 - I / 125))
    mp = minimal_polynomial(ex, x)
    assert mp == 25 * x**4 + 5000 * x**2 + 250016

    ex = 1 + sqrt(2) + sqrt(3)
    mp = minimal_polynomial(ex, x)
    assert mp == x**4 - 4 * x**3 - 4 * x**2 + 16 * x - 8

    ex = 1 / (1 + sqrt(2) + sqrt(3))
    mp = minimal_polynomial(ex, x)
    assert mp == 8 * x**4 - 16 * x**3 + 4 * x**2 + 4 * x - 1

    p = (expand((1 + sqrt(2) - 2 * sqrt(3) + sqrt(7))**3))**Rational(1, 3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 8 * x**7 - 56 * x**6 + 448 * x**5 + 480 * x**4 - 5056 * x**3 + 1984 * x**2 + 7424 * x - 3008
    p = expand((1 + sqrt(2) - 2 * sqrt(3) + sqrt(7))**3)
    mp = minimal_polynomial(p, x)
    assert mp == x**8 - 512 * x**7 - 118208 * x**6 + 31131136 * x**5 + 647362560 * x**4 - 56026611712 * x**3 + 116994310144 * x**2 + 404854931456 * x - 27216576512

    assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"),
                              x) == x - 1
    a = 1 + sqrt(2)
    assert minimal_polynomial((a * sqrt(2) + a)**3, x) == x**2 - 198 * x + 1

    p = 1 / (1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(
        p, x, compose=False) == 8 * x**4 - 16 * x**3 + 4 * x**2 + 4 * x - 1

    p = 2 / (1 + sqrt(2) + sqrt(3))
    assert minimal_polynomial(
        p, x, compose=False) == x**4 - 4 * x**3 + 2 * x**2 + 4 * x - 2

    assert minimal_polynomial(1 + sqrt(2) * I, x,
                              compose=False) == x**2 - 2 * x + 3
    assert minimal_polynomial(1 / (1 + sqrt(2)) + 1, x,
                              compose=False) == x**2 - 2
    assert minimal_polynomial(sqrt(2) * I + I * (1 + sqrt(2)),
                              x,
                              compose=False) == x**4 + 18 * x**2 + 49

    # minimal polynomial of I
    assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I
    K = QQ.algebraic_field(I * (sqrt(2) + 1))
    assert minimal_polynomial(I, x, domain=K) == x - I
    assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1
    assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1

    #issue 11553
    assert minimal_polynomial(GoldenRatio, x) == x**2 - x - 1
    assert minimal_polynomial(TribonacciConstant + 3,
                              x) == x**3 - 10 * x**2 + 32 * x - 34
    assert minimal_polynomial(GoldenRatio, x, domain=QQ.algebraic_field(sqrt(5))) == \
            2*x - sqrt(5) - 1
    assert minimal_polynomial(TribonacciConstant, x, domain=QQ.algebraic_field(cbrt(19 - 3*sqrt(33)))) == \
    48*x - 19*(19 - 3*sqrt(33))**Rational(2, 3) - 3*sqrt(33)*(19 - 3*sqrt(33))**Rational(2, 3) \
    - 16*(19 - 3*sqrt(33))**Rational(1, 3) - 16

    # AlgebraicNumber with an alias.
    # Wester H24
    phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
    assert minimal_polynomial(phi, x) == x**2 - x - 1
Esempio n. 14
0
def test_AlgebraicNumber():
    minpoly, root = x**2 - 2, sqrt(2)

    a = AlgebraicNumber(root, gen=x)

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert a.coeffs() == [S.One, S.Zero]
    assert a.native_coeffs() == [QQ(1), QQ(0)]

    a = AlgebraicNumber(root, gen=x, alias='y')

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias == Symbol('y')
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is True

    a = AlgebraicNumber(root, gen=x, alias=Symbol('y'))

    assert a.rep == DMP([QQ(1), QQ(0)], QQ)
    assert a.root == root
    assert a.alias == Symbol('y')
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is True

    assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ)
    assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ)
    assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ)

    assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ)
    assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ)

    assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ)
    assert AlgebraicNumber(
        sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ)

    assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ)

    a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert a.coeffs() == [S.One, S(2)]
    assert a.native_coeffs() == [QQ(1), QQ(2)]

    a = AlgebraicNumber((minpoly, root), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    a = AlgebraicNumber((Poly(minpoly), root), [1, 2])

    assert a.rep == DMP([QQ(1), QQ(2)], QQ)
    assert a.root == root
    assert a.alias is None
    assert a.minpoly == minpoly
    assert a.is_number

    assert a.is_aliased is False

    assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)
    assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ)

    a = AlgebraicNumber(sqrt(2))
    b = AlgebraicNumber(sqrt(2))

    assert a == b

    c = AlgebraicNumber(sqrt(2), gen=x)

    assert a == b
    assert a == c

    a = AlgebraicNumber(sqrt(2), [1, 2])
    b = AlgebraicNumber(sqrt(2), [1, 3])

    assert a != b and a != sqrt(2) + 3

    assert (a == x) is False and (a != x) is True

    a = AlgebraicNumber(sqrt(2), [1, 0])
    b = AlgebraicNumber(sqrt(2), [1, 0], alias=y)

    assert a.as_poly(x) == Poly(x, domain='QQ')
    assert b.as_poly() == Poly(y, domain='QQ')

    assert a.as_expr() == sqrt(2)
    assert a.as_expr(x) == x
    assert b.as_expr() == sqrt(2)
    assert b.as_expr(x) == x

    a = AlgebraicNumber(sqrt(2), [2, 3])
    b = AlgebraicNumber(sqrt(2), [2, 3], alias=y)

    p = a.as_poly()

    assert p == Poly(2*p.gen + 3)

    assert a.as_poly(x) == Poly(2*x + 3, domain='QQ')
    assert b.as_poly() == Poly(2*y + 3, domain='QQ')

    assert a.as_expr() == 2*sqrt(2) + 3
    assert a.as_expr(x) == 2*x + 3
    assert b.as_expr() == 2*sqrt(2) + 3
    assert b.as_expr(x) == 2*x + 3

    a = AlgebraicNumber(sqrt(2))
    b = to_number_field(sqrt(2))
    assert a.args == b.args == (sqrt(2), Tuple(1, 0))
    b = AlgebraicNumber(sqrt(2), alias='alpha')
    assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha'))

    a = AlgebraicNumber(sqrt(2), [1, 2, 3])
    assert a.args == (sqrt(2), Tuple(1, 2, 3))

    a = AlgebraicNumber(sqrt(2), [1, 2], "alpha")
    b = AlgebraicNumber(a)
    c = AlgebraicNumber(a, alias="gamma")
    assert a == b
    assert c.alias.name == "gamma"

    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0])
    b = AlgebraicNumber(a, [1, 0, 0])
    assert b.root == a.root
    assert a.to_root() == sqrt(2)
    assert b.to_root() == 2

    a = AlgebraicNumber(2)
    assert a.is_primitive_element is True
Esempio n. 15
0
def field_isomorphism(a, b, *, fast=True):
    r"""
    Find an embedding of one number field into another.

    Explanation
    ===========

    This function looks for an isomorphism from $\mathbb{Q}(a)$ onto some
    subfield of $\mathbb{Q}(b)$. Thus, it solves the Subfield Problem.

    Examples
    ========

    >>> from sympy import sqrt, field_isomorphism, I
    >>> print(field_isomorphism(3, sqrt(2)))  # doctest: +SKIP
    [3]
    >>> print(field_isomorphism( I*sqrt(3), I*sqrt(3)/2))  # doctest: +SKIP
    [2, 0]

    Parameters
    ==========

    a : :py:class:`~.Expr`
        Any expression representing an algebraic number.
    b : :py:class:`~.Expr`
        Any expression representing an algebraic number.
    fast : boolean, optional (default=True)
        If ``True``, we first attempt a potentially faster way of computing the
        isomorphism, falling back on a slower method if this fails. If
        ``False``, we go directly to the slower method, which is guaranteed to
        return a result.

    Returns
    =======

    List of rational numbers, or None
        If $\mathbb{Q}(a)$ is not isomorphic to some subfield of
        $\mathbb{Q}(b)$, then return ``None``. Otherwise, return a list of
        rational numbers representing an element of $\mathbb{Q}(b)$ to which
        $a$ may be mapped, in order to define a monomorphism, i.e. an
        isomorphism from $\mathbb{Q}(a)$ to some subfield of $\mathbb{Q}(b)$.
        The elements of the list are the coefficients of falling powers of $b$.

    """
    a, b = sympify(a), sympify(b)

    if not a.is_AlgebraicNumber:
        a = AlgebraicNumber(a)

    if not b.is_AlgebraicNumber:
        b = AlgebraicNumber(b)

    a = a.to_primitive_element()
    b = b.to_primitive_element()

    if a == b:
        return a.coeffs()

    n = a.minpoly.degree()
    m = b.minpoly.degree()

    if n == 1:
        return [a.root]

    if m % n != 0:
        return None

    if fast:
        try:
            result = field_isomorphism_pslq(a, b)

            if result is not None:
                return result
        except NotImplementedError:
            pass

    return field_isomorphism_factor(a, b)
Esempio n. 16
0
def test_issue_22561():
    a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1) / 2, 0, S(-9) / 2, 0], gen=x)
    assert a.as_expr() == sqrt(2)
    assert minimal_polynomial(a, x) == x**2 - 2
    assert minimal_polynomial(a**3, x) == x**2 - 8
Esempio n. 17
0
def test_issue_22559():
    alpha = AlgebraicNumber(sqrt(2))
    assert minimal_polynomial(alpha**3, x) == x**2 - 8
Esempio n. 18
0
def to_number_field(extension, theta=None, *, gen=None, alias=None):
    r"""
    Express one algebraic number in the field generated by another.

    Explanation
    ===========

    Given two algebraic numbers $\eta, \theta$, this function either expresses
    $\eta$ as an element of $\mathbb{Q}(\theta)$, or else raises an exception
    if $\eta \not\in \mathbb{Q}(\theta)$.

    This function is essentially just a convenience, utilizing
    :py:func:`~.field_isomorphism` (our solution of the Subfield Problem) to
    solve this, the Field Membership Problem.

    As an additional convenience, this function allows you to pass a list of
    algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ instead of $\eta$.
    It then computes $\eta$ for you, as a solution of the Primitive Element
    Problem, using :py:func:`~.primitive_element` on the list of $\alpha_i$.

    Examples
    ========

    >>> from sympy import sqrt, to_number_field
    >>> eta = sqrt(2)
    >>> theta = sqrt(2) + sqrt(3)
    >>> a = to_number_field(eta, theta)
    >>> print(type(a))
    <class 'sympy.core.numbers.AlgebraicNumber'>
    >>> a.root
    sqrt(2) + sqrt(3)
    >>> print(a)
    sqrt(2)
    >>> a.coeffs()
    [1/2, 0, -9/2, 0]

    We get an :py:class:`~.AlgebraicNumber`, whose ``.root`` is $\theta$, whose
    value is $\eta$, and whose ``.coeffs()`` show how to write $\eta$ as a
    $\mathbb{Q}$-linear combination in falling powers of $\theta$.

    Parameters
    ==========

    extension : :py:class:`~.Expr` or list of :py:class:`~.Expr`
        Either the algebraic number that is to be expressed in the other field,
        or else a list of algebraic numbers, a primitive element for which is
        to be expressed in the other field.
    theta : :py:class:`~.Expr`, None, optional (default=None)
        If an :py:class:`~.Expr` representing an algebraic number, behavior is
        as described under **Explanation**. If ``None``, then this function
        reduces to a shorthand for calling :py:func:`~.primitive_element` on
        ``extension`` and turning the computed primitive element into an
        :py:class:`~.AlgebraicNumber`.
    gen : :py:class:`~.Symbol`, None, optional (default=None)
        If provided, this will be used as the generator symbol for the minimal
        polynomial in the returned :py:class:`~.AlgebraicNumber`.
    alias : str, :py:class:`~.Symbol`, None, optional (default=None)
        If provided, this will be used as the alias symbol for the returned
        :py:class:`~.AlgebraicNumber`.

    Returns
    =======

    AlgebraicNumber
        Belonging to $\mathbb{Q}(\theta)$ and equaling $\eta$.

    Raises
    ======

    IsomorphismFailed
        If $\eta \not\in \mathbb{Q}(\theta)$.

    See Also
    ========

    field_isomorphism
    primitive_element

    """
    if hasattr(extension, '__iter__'):
        extension = list(extension)
    else:
        extension = [extension]

    if len(extension) == 1 and isinstance(extension[0], tuple):
        return AlgebraicNumber(extension[0], alias=alias)

    minpoly, coeffs = primitive_element(extension, gen, polys=True)
    root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ])

    if theta is None:
        return AlgebraicNumber((minpoly, root), alias=alias)
    else:
        theta = sympify(theta)

        if not theta.is_AlgebraicNumber:
            theta = AlgebraicNumber(theta, gen=gen, alias=alias)

        coeffs = field_isomorphism(root, theta)

        if coeffs is not None:
            return AlgebraicNumber(theta, coeffs, alias=alias)
        else:
            raise IsomorphismFailed(
                "%s is not in a subfield of %s" % (root, theta.root))
Esempio n. 19
0
def test_issue_22849():
    a = -8 + 3 * sqrt(3)
    x = AlgebraicNumber(a)
    assert evalf(a, 1, {}) == evalf(x, 1, {})