def Test_Reciprocal_Frame(): Print_Function() Format() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') eu = ex+ey ev = ex-ey (eu_r,ev_r) = ReciprocalFrame([eu,ev]) oprint('\\mbox{Frame}',(eu,ev),'\\mbox{Reciprocal Frame}',(eu_r,ev_r)) print r'%\bm{e}_{u}\cdot\bm{e}^{u} =',(eu|eu_r) print r'%\bm{e}_{u}\cdot\bm{e}^{v} =',eu|ev_r print r'%\bm{e}_{v}\cdot\bm{e}^{u} =',ev|eu_r print r'%\bm{e}_{v}\cdot\bm{e}^{v} =',ev|ev_r eu = ex+ey+ez ev = ex-ey (eu_r,ev_r) = ReciprocalFrame([eu,ev]) oprint('\\mbox{Frame}',(eu,ev),'\\mbox{Reciprocal Frame}',(eu_r,ev_r)) print r'%\bm{e}_{u}\cdot\bm{e}^{u} =',eu|eu_r print r'%\bm{e}_{u}\cdot\bm{e}^{v} =',eu|ev_r print r'%\bm{e}_{v}\cdot\bm{e}^{u} =',ev|eu_r print r'%\bm{e}_{v}\cdot\bm{e}^{v} =',ev|ev_r return
def Simple_manifold_with_scalar_function_derivative(): Print_Function() coords = (x,y,z) = symbols('x y z') basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3',metric='[1,1,1]',coords=coords) # Define surface mfvar = (u,v) = symbols('u v') X = u*e1+v*e2+(u**2+v**2)*e3 print '\\f{X}{u,v} =',X MF = Manifold(X,mfvar) (eu,ev) = MF.Basis() # Define field on the surface. g = (v+1)*log(u) print '\\f{g}{u,v} =',g # Method 1: Using old Manifold routines. VectorDerivative = (MF.rbasis[0]/MF.E_sq)*diff(g,u) + (MF.rbasis[1]/MF.E_sq)*diff(g,v) print '\\eval{\\nabla g}{u=1,v=0} =', VectorDerivative.subs({u:1,v:0}) # Method 2: Using new Manifold routines. dg = MF.Grad(g) print '\\eval{\\f{Grad}{g}}{u=1,v=0} =', dg.subs({u:1,v:0}) dg = MF.grad*g print '\\eval{\\nabla g}{u=1,v=0} =', dg.subs({u:1,v:0}) return
def Distorted_manifold_with_scalar_function(): Print_Function() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') X = 2*u*ex+2*v*ey+(u**3+v**3/2)*ez MF = Manifold(X,mfvar,I=MV.I) (eu,ev) = MF.Basis() g = (v+1)*log(u) dg = MF.Grad(g) print 'g =',g print 'dg =',dg print '\\eval{dg}{u=1,v=0} =',dg.subs({u:1,v:0}) G = u*eu+v*ev dG = MF.Grad(G) print 'G =',G print 'P(G) =',MF.Proj(G) print 'dG =',dG print 'P(dG) =',MF.Proj(dG) PS = u*v*eu^ev print 'P(S) =',PS print 'dP(S) =',MF.Grad(PS) print 'P(dP(S)) =',MF.Proj(MF.Grad(PS)) return
def Simple_manifold_with_vector_function_derivative(): Print_Function() coords = (x,y,z) = symbols('x y z') basis = (ex, ey, ez, grad) = \ MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=coords) # Define surface mfvar = (u,v) = symbols('u v') X = u*ex+v*ey+(u**2+v**2)*ez print '\\f{X}{u,v} =',X MF = Manifold(X,mfvar) (eu,ev) = MF.Basis() # Define field on the surface. g = (v+1)*log(u) print '\\mbox{Scalar Function: } g =',g dg = MF.grad*g dg.Fmt(3,'\\mbox{Scalar Function Derivative: } \\nabla g') print '\\eval{\\nabla g}{(1,0)} =',dg.subs({u:1,v:0}) # Define vector field on the surface G = v**2*eu+u**2*ev print '\\mbox{Vector Function: } G =',G dG = MF.grad*G dG.Fmt(3,'\\mbox{Vector Function Derivative: } \\nabla G') print '\\eval{\\nabla G}{(1,0)} =',dG.subs({u:1,v:0}) return
def Plot_Mobius_Strip_Manifold(): Print_Function() coords = symbols('x y z') (ex,ey,ez,grad) = MV.setup('e_x e_y e_z',metric='[1,1,1]',coords=coords) mfvar = (u,v) = symbols('u v') X = (cos(u)+v*cos(u/2)*cos(u))*ex+(sin(u)+v*cos(u/2)*sin(u))*ey+v*sin(u/2)*ez MF = Manifold(X,mfvar,True,I=MV.I) MF.Plot2DSurface([0.0,6.28,48],[-0.3,0.3,12],surf=False,skip=[4,4],tan=0.15) return