def test_extracting_vectors_from_conformal_2_blade(): GA_Printer.on() metric = ' 0 -1 #,' + \ '-1 0 #,' + \ ' # # #,' (P1, P2, a) = MV.setup('P1 P2 a', metric) B = P1 ^ P2 Bsq = B*B assert str(Bsq) == '1' ap = a - (a ^ B)*B assert str(ap) == '-(P2.a)*P1 - (P1.a)*P2' Ap = ap + ap*B Am = ap - ap*B assert str(Ap) == '-2*(P2.a)*P1' assert str(Am) == '-2*(P1.a)*P2' assert str(Ap*Ap) == '0' assert str(Am*Am) == '0' aB = a | B assert str(aB) == '-(P2.a)*P1 + (P1.a)*P2' GA_Printer.off() return
def test_conformal_representations_of_circles_lines_spheres_and_planes(): global n, nbar GA_Printer.on() metric = '1 0 0 0 0,0 1 0 0 0,0 0 1 0 0,0 0 0 0 2,0 0 0 2 0' (e1, e2, e3, n, nbar) = MV.setup('e_1 e_2 e_3 n nbar', metric) e = n + nbar #conformal representation of points A = make_vector(e1) B = make_vector(e2) C = make_vector(-e1) D = make_vector(e3) X = make_vector('x', 3) assert str(A) == 'e_1 + 1/2*n - 1/2*nbar' assert str(B) == 'e_2 + 1/2*n - 1/2*nbar' assert str(C) == '-e_1 + 1/2*n - 1/2*nbar' assert str(D) == 'e_3 + 1/2*n - 1/2*nbar' assert str(X) == 'x1*e_1 + x2*e_2 + x3*e_3 + ((x1**2 + x2**2 + x3**2)/2)*n - 1/2*nbar' assert str((A ^ B ^ C ^ X)) == '-x3*e_1^e_2^e_3^n + x3*e_1^e_2^e_3^nbar + ((x1**2 + x2**2 + x3**2 - 1)/2)*e_1^e_2^n^nbar' assert str((A ^ B ^ n ^ X)) == '-x3*e_1^e_2^e_3^n + ((x1 + x2 - 1)/2)*e_1^e_2^n^nbar + x3/2*e_1^e_3^n^nbar - x3/2*e_2^e_3^n^nbar' assert str((((A ^ B) ^ C) ^ D) ^ X) == '((-x1**2 - x2**2 - x3**2 + 1)/2)*e_1^e_2^e_3^n^nbar' assert str((A ^ B ^ n ^ D ^ X)) == '((-x1 - x2 - x3 + 1)/2)*e_1^e_2^e_3^n^nbar' L = (A ^ B ^ e) ^ X assert str(L) == '-x3*e_1^e_2^e_3^n - x3*e_1^e_2^e_3^nbar + (-x1**2/2 + x1 - x2**2/2 + x2 - x3**2/2 - 1/2)*e_1^e_2^n^nbar + x3*e_1^e_3^n^nbar - x3*e_2^e_3^n^nbar' GA_Printer.off() return
def test_derivatives_in_rectangular_coordinates(): GA_Printer.on() X = (x, y, z) = symbols('x y z') (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X) f = MV('f', 'scalar', fct=True) A = MV('A', 'vector', fct=True) B = MV('B', 'grade2', fct=True) C = MV('C', 'mv', fct=True) assert str(f) == 'f' assert str(A) == 'A__x*e_x + A__y*e_y + A__z*e_z' assert str(B) == 'B__xy*e_x^e_y + B__xz*e_x^e_z + B__yz*e_y^e_z' assert str(C) == 'C + C__x*e_x + C__y*e_y + C__z*e_z + C__xy*e_x^e_y + C__xz*e_x^e_z + C__yz*e_y^e_z + C__xyz*e_x^e_y^e_z' assert str(grad*f) == 'D{x}f*e_x + D{y}f*e_y + D{z}f*e_z' assert str(grad | A) == 'D{x}A__x + D{y}A__y + D{z}A__z' assert str(grad*A) == 'D{x}A__x + D{y}A__y + D{z}A__z + (-D{y}A__x + D{x}A__y)*e_x^e_y + (-D{z}A__x + D{x}A__z)*e_x^e_z + (-D{z}A__y + D{y}A__z)*e_y^e_z' assert str(-MV.I*(grad ^ A)) == '(-D{z}A__y + D{y}A__z)*e_x + (D{z}A__x - D{x}A__z)*e_y + (-D{y}A__x + D{x}A__y)*e_z' assert str(grad*B) == '(-(D{y}B__xy + D{z}B__xz))*e_x + (D{x}B__xy - D{z}B__yz)*e_y + (D{x}B__xz + D{y}B__yz)*e_z + (D{z}B__xy - D{y}B__xz + D{x}B__yz)*e_x^e_y^e_z' assert str(grad ^ B) == '(D{z}B__xy - D{y}B__xz + D{x}B__yz)*e_x^e_y^e_z' assert str(grad | B) == '(-(D{y}B__xy + D{z}B__xz))*e_x + (D{x}B__xy - D{z}B__yz)*e_y + (D{x}B__xz + D{y}B__yz)*e_z' assert str(grad < A) == 'D{x}A__x + D{y}A__y + D{z}A__z' assert str(grad > A) == 'D{x}A__x + D{y}A__y + D{z}A__z' assert str(grad < B) == '(-(D{y}B__xy + D{z}B__xz))*e_x + (D{x}B__xy - D{z}B__yz)*e_y + (D{x}B__xz + D{y}B__yz)*e_z' assert str(grad > B) == '0' assert str(grad < C) == 'D{x}C__x + D{y}C__y + D{z}C__z + (-(D{y}C__xy + D{z}C__xz))*e_x + (D{x}C__xy - D{z}C__yz)*e_y + (D{x}C__xz + D{y}C__yz)*e_z + D{z}C__xyz*e_x^e_y - D{y}C__xyz*e_x^e_z + D{x}C__xyz*e_y^e_z' assert str(grad > C) == 'D{x}C__x + D{y}C__y + D{z}C__z + D{x}C*e_x + D{y}C*e_y + D{z}C*e_z' GA_Printer.off() return
def test_reciprocal_frame_test(): GA_Printer.on() metric = '1 # #,' + \ '# 1 #,' + \ '# # 1,' (e1, e2, e3) = MV.setup('e1 e2 e3', metric) E = e1 ^ e2 ^ e3 Esq = (E*E).scalar() assert str(E) == 'e1^e2^e3' assert str(Esq) == '(e1.e2)**2 - 2*(e1.e2)*(e1.e3)*(e2.e3) + (e1.e3)**2 + (e2.e3)**2 - 1' Esq_inv = 1/Esq E1 = (e2 ^ e3)*E E2 = (-1)*(e1 ^ e3)*E E3 = (e1 ^ e2)*E assert str(E1) == '((e2.e3)**2 - 1)*e1 + ((e1.e2) - (e1.e3)*(e2.e3))*e2 + (-(e1.e2)*(e2.e3) + (e1.e3))*e3' assert str(E2) == '((e1.e2) - (e1.e3)*(e2.e3))*e1 + ((e1.e3)**2 - 1)*e2 + (-(e1.e2)*(e1.e3) + (e2.e3))*e3' assert str(E3) == '(-(e1.e2)*(e2.e3) + (e1.e3))*e1 + (-(e1.e2)*(e1.e3) + (e2.e3))*e2 + ((e1.e2)**2 - 1)*e3' w = (E1 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e3) w = w.expand() assert str(w) == '0' w = (E2 | e1) w = w.expand() assert str(w) == '0' w = (E2 | e3) w = w.expand() assert str(w) == '0' w = (E3 | e1) w = w.expand() assert str(w) == '0' w = (E3 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e1) w = (w.expand()).scalar() Esq = expand(Esq) assert str(simplify(w/Esq)) == '1' w = (E2 | e2) w = (w.expand()).scalar() assert str(simplify(w/Esq)) == '1' w = (E3 | e3) w = (w.expand()).scalar() assert str(simplify(w/Esq)) == '1' GA_Printer.off() return
def test_rounding_numerical_components(): GA_Printer.on() (ex, ey, ez) = MV.setup('e_x e_y e_z', metric='[1,1,1]') X = 1.2*ex + 2.34*ey + 0.555*ez Y = 0.333*ex + 4*ey + 5.3*ez assert str(X) == '1.20000000000000*e_x + 2.34000000000000*e_y + 0.555000000000000*e_z' assert str(Nga(X, 2)) == '1.2*e_x + 2.3*e_y + 0.55*e_z' assert str(X*Y) == '12.7011000000000 + 4.02078000000000*e_x^e_y + 6.17518500000000*e_x^e_z + 10.1820000000000*e_y^e_z' assert str(Nga(X*Y, 2)) == '13. + 4.0*e_x^e_y + 6.2*e_x^e_z + 10.*e_y^e_z' GA_Printer.off() return
def test_basic_multivector_operations(): GA_Printer.on() (ex, ey, ez) = MV.setup('e*x|y|z') A = MV('A', 'mv') assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' X = MV('X', 'vector') Y = MV('Y', 'vector') assert str(X) == 'X__x*e_x + X__y*e_y + X__z*e_z' assert str(Y) == 'Y__x*e_x + Y__y*e_y + Y__z*e_z' assert str((X*Y)) == '(e_x.e_x)*X__x*Y__x + (e_x.e_y)*X__x*Y__y + (e_x.e_y)*X__y*Y__x + (e_x.e_z)*X__x*Y__z + (e_x.e_z)*X__z*Y__x + (e_y.e_y)*X__y*Y__y + (e_y.e_z)*X__y*Y__z + (e_y.e_z)*X__z*Y__y + (e_z.e_z)*X__z*Y__z + (X__x*Y__y - X__y*Y__x)*e_x^e_y + (X__x*Y__z - X__z*Y__x)*e_x^e_z + (X__y*Y__z - X__z*Y__y)*e_y^e_z' assert str((X ^ Y)) == '(X__x*Y__y - X__y*Y__x)*e_x^e_y + (X__x*Y__z - X__z*Y__x)*e_x^e_z + (X__y*Y__z - X__z*Y__y)*e_y^e_z' assert str((X | Y)) == '(e_x.e_x)*X__x*Y__x + (e_x.e_y)*X__x*Y__y + (e_x.e_y)*X__y*Y__x + (e_x.e_z)*X__x*Y__z + (e_x.e_z)*X__z*Y__x + (e_y.e_y)*X__y*Y__y + (e_y.e_z)*X__y*Y__z + (e_y.e_z)*X__z*Y__y + (e_z.e_z)*X__z*Y__z' (ex, ey) = MV.setup('e*x|y') X = MV('X', 'vector') A = MV('A', 'spinor') assert str(X) == 'X__x*e_x + X__y*e_y' assert str(A) == 'A + A__xy*e_x^e_y' assert str((X | A)) == '(-A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' assert str((X < A)) == '(-A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' assert str((A > X)) == '(A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (-A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' (ex, ey) = MV.setup('e*x|y', metric='[1,1]') X = MV('X', 'vector') A = MV('A', 'spinor') assert str(X) == 'X__x*e_x + X__y*e_y' assert str(A) == 'A + A__xy*e_x^e_y' assert str((X*A)) == '(A*X__x - A__xy*X__y)*e_x + (A*X__y + A__xy*X__x)*e_y' assert str((X | A)) == '-A__xy*X__y*e_x + A__xy*X__x*e_y' assert str((X < A)) == '-A__xy*X__y*e_x + A__xy*X__x*e_y' assert str((X > A)) == 'A*X__x*e_x + A*X__y*e_y' assert str((A*X)) == '(A*X__x + A__xy*X__y)*e_x + (A*X__y - A__xy*X__x)*e_y' assert str((A | X)) == 'A__xy*X__y*e_x - A__xy*X__x*e_y' assert str((A < X)) == 'A*X__x*e_x + A*X__y*e_y' assert str((A > X)) == 'A__xy*X__y*e_x - A__xy*X__x*e_y' GA_Printer.off() return
def test_check_generalized_BAC_CAB_formulas(): GA_Printer.on() (a, b, c, d, e) = MV.setup('a b c d e') assert str(a | (b*c)) == '-(a.c)*b + (a.b)*c' assert str(a | (b ^ c)) == '-(a.c)*b + (a.b)*c' assert str(a | (b ^ c ^ d)) == '(a.d)*b^c - (a.c)*b^d + (a.b)*c^d' assert str((a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a))) == '0' assert str(a*(b ^ c) - b*(a ^ c) + c*(a ^ b)) == '3*a^b^c' assert str(a*(b ^ c ^ d) - b*(a ^ c ^ d) + c*(a ^ b ^ d) - d*(a ^ b ^ c)) == '4*a^b^c^d' assert str((a ^ b) | (c ^ d)) == '-(a.c)*(b.d) + (a.d)*(b.c)' assert str(((a ^ b) | c) | d) == '-(a.c)*(b.d) + (a.d)*(b.c)' assert str(Com(a ^ b, c ^ d)) == '-(b.d)*a^c + (b.c)*a^d + (a.d)*b^c - (a.c)*b^d' assert str((a | (b ^ c)) | (d ^ e)) == '(-(a.b)*(c.e) + (a.c)*(b.e))*d + ((a.b)*(c.d) - (a.c)*(b.d))*e' GA_Printer.off() return
def test_derivatives_in_spherical_coordinates(): GA_Printer.on() X = (r, th, phi) = symbols('r theta phi') curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]] (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv) f = MV('f', 'scalar', fct=True) A = MV('A', 'vector', fct=True) B = MV('B', 'grade2', fct=True) assert str(f) == 'f' assert str(A) == 'A__r*e_r + A__theta*e_theta + A__phi*e_phi' assert str(B) == 'B__rtheta*e_r^e_theta + B__rphi*e_r^e_phi + B__thetaphi*e_theta^e_phi' assert str(grad*f) == 'D{r}f*e_r + D{theta}f/r*e_theta + D{phi}f/(r*sin(theta))*e_phi' assert str(grad | A) == 'D{r}A__r + 2*A__r/r + A__theta*cos(theta)/(r*sin(theta)) + D{theta}A__theta/r + D{phi}A__phi/(r*sin(theta))' assert str(-MV.I*(grad ^ A)) == '((A__phi*cos(theta)/sin(theta) + D{theta}A__phi - D{phi}A__theta/sin(theta))/r)*e_r + (-D{r}A__phi - A__phi/r + D{phi}A__r/(r*sin(theta)))*e_theta + (D{r}A__theta + A__theta/r - D{theta}A__r/r)*e_phi' assert str(grad ^ B) == '(D{r}B__thetaphi - B__rphi*cos(theta)/(r*sin(theta)) + 2*B__thetaphi/r - D{theta}B__rphi/r + D{phi}B__rtheta/(r*sin(theta)))*e_r^e_theta^e_phi' GA_Printer.off() return
def test_rounding_numerical_components(): with GA_Printer(): (ex, ey, ez) = MV.setup('e_x e_y e_z', metric='[1,1,1]') X = 1.2*ex + 2.34*ey + 0.555*ez Y = 0.333*ex + 4*ey + 5.3*ez assert str(X) == '1.20000000000000*e_x + 2.34000000000000*e_y + 0.555000000000000*e_z' assert str(Nga(X, 2)) == '1.2*e_x + 2.3*e_y + 0.55*e_z' assert str(X*Y) == '12.7011000000000 + 4.02078000000000*e_x^e_y + 6.17518500000000*e_x^e_z + 10.1820000000000*e_y^e_z' assert str(Nga(X*Y, 2)) == '13. + 4.0*e_x^e_y + 6.2*e_x^e_z + 10.*e_y^e_z' return
def test_basic_multivector_operations(): with GA_Printer(): (ex, ey, ez) = MV.setup('e*x|y|z') A = MV('A', 'mv') assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' assert str(A) == 'A + A__x*e_x + A__y*e_y + A__z*e_z + A__xy*e_x^e_y + A__xz*e_x^e_z + A__yz*e_y^e_z + A__xyz*e_x^e_y^e_z' X = MV('X', 'vector') Y = MV('Y', 'vector') assert str(X) == 'X__x*e_x + X__y*e_y + X__z*e_z' assert str(Y) == 'Y__x*e_x + Y__y*e_y + Y__z*e_z' assert str((X*Y)) == '(e_x.e_x)*X__x*Y__x + (e_x.e_y)*X__x*Y__y + (e_x.e_y)*X__y*Y__x + (e_x.e_z)*X__x*Y__z + (e_x.e_z)*X__z*Y__x + (e_y.e_y)*X__y*Y__y + (e_y.e_z)*X__y*Y__z + (e_y.e_z)*X__z*Y__y + (e_z.e_z)*X__z*Y__z + (X__x*Y__y - X__y*Y__x)*e_x^e_y + (X__x*Y__z - X__z*Y__x)*e_x^e_z + (X__y*Y__z - X__z*Y__y)*e_y^e_z' assert str((X ^ Y)) == '(X__x*Y__y - X__y*Y__x)*e_x^e_y + (X__x*Y__z - X__z*Y__x)*e_x^e_z + (X__y*Y__z - X__z*Y__y)*e_y^e_z' assert str((X | Y)) == '(e_x.e_x)*X__x*Y__x + (e_x.e_y)*X__x*Y__y + (e_x.e_y)*X__y*Y__x + (e_x.e_z)*X__x*Y__z + (e_x.e_z)*X__z*Y__x + (e_y.e_y)*X__y*Y__y + (e_y.e_z)*X__y*Y__z + (e_y.e_z)*X__z*Y__y + (e_z.e_z)*X__z*Y__z' (ex, ey) = MV.setup('e*x|y') X = MV('X', 'vector') A = MV('A', 'spinor') assert str(X) == 'X__x*e_x + X__y*e_y' assert str(A) == 'A + A__xy*e_x^e_y' assert str((X | A)) == '(-A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' assert str((X < A)) == '(-A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' assert str((A > X)) == '(A__xy*((e_x.e_y)*X__x + (e_y.e_y)*X__y))*e_x + (-A__xy*((e_x.e_x)*X__x + (e_x.e_y)*X__y))*e_y' (ex, ey) = MV.setup('e*x|y', metric='[1,1]') X = MV('X', 'vector') A = MV('A', 'spinor') assert str(X) == 'X__x*e_x + X__y*e_y' assert str(A) == 'A + A__xy*e_x^e_y' assert str((X*A)) == '(A*X__x - A__xy*X__y)*e_x + (A*X__y + A__xy*X__x)*e_y' assert str((X | A)) == '-A__xy*X__y*e_x + A__xy*X__x*e_y' assert str((X < A)) == '-A__xy*X__y*e_x + A__xy*X__x*e_y' assert str((X > A)) == 'A*X__x*e_x + A*X__y*e_y' assert str((A*X)) == '(A*X__x + A__xy*X__y)*e_x + (A*X__y - A__xy*X__x)*e_y' assert str((A | X)) == 'A__xy*X__y*e_x - A__xy*X__x*e_y' assert str((A < X)) == 'A*X__x*e_x + A*X__y*e_y' assert str((A > X)) == 'A__xy*X__y*e_x - A__xy*X__x*e_y' return
def test_properties_of_geometric_objects(): GA_Printer.on() metric = '# # # 0 0,' + \ '# # # 0 0,' + \ '# # # 0 0,' + \ '0 0 0 0 2,' + \ '0 0 0 2 0' (p1, p2, p3, n, nbar) = MV.setup('p1 p2 p3 n nbar', metric) P1 = F(p1, n, nbar) P2 = F(p2, n, nbar) P3 = F(p3, n, nbar) L = P1 ^ P2 ^ n delta = (L | n) | nbar assert str(delta) == '2*p1 - 2*p2' C = P1 ^ P2 ^ P3 delta = ((C ^ n) | n) | nbar assert str(delta) == '2*p1^p2 - 2*p1^p3 + 2*p2^p3' assert str((p2 - p1) ^ (p3 - p1)) == 'p1^p2 - p1^p3 + p2^p3' GA_Printer.off() return
def main(): Get_Program(True) with GA_Printer(): enhance_print() basic_multivector_operations() check_generalized_BAC_CAB_formulas() derivatives_in_rectangular_coordinates() derivatives_in_spherical_coordinates() rounding_numerical_components() noneuclidian_distance_calculation() conformal_representations_of_circles_lines_spheres_and_planes() properties_of_geometric_objects() extracting_vectors_from_conformal_2_blade() reciprocal_frame_test() return
def test_check_generalized_BAC_CAB_formulas(): with GA_Printer(): (a, b, c, d, e) = MV.setup('a b c d e') assert str(a | (b*c)) == '-(a.c)*b + (a.b)*c' assert str(a | (b ^ c)) == '-(a.c)*b + (a.b)*c' assert str(a | (b ^ c ^ d)) == '(a.d)*b^c - (a.c)*b^d + (a.b)*c^d' assert str((a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a))) == '0' assert str(a*(b ^ c) - b*(a ^ c) + c*(a ^ b)) == '3*a^b^c' assert str(a*(b ^ c ^ d) - b*(a ^ c ^ d) + c*(a ^ b ^ d) - d*(a ^ b ^ c)) == '4*a^b^c^d' assert str((a ^ b) | (c ^ d)) == '-(a.c)*(b.d) + (a.d)*(b.c)' assert str(((a ^ b) | c) | d) == '-(a.c)*(b.d) + (a.d)*(b.c)' assert str(Com(a ^ b, c ^ d)) == '-(b.d)*a^c + (b.c)*a^d + (a.d)*b^c - (a.c)*b^d' assert str((a | (b ^ c)) | (d ^ e)) == '(-(a.b)*(c.e) + (a.c)*(b.e))*d + ((a.b)*(c.d) - (a.c)*(b.d))*e' return
def test_derivatives_in_spherical_coordinates(): with GA_Printer(): X = (r, th, phi) = symbols('r theta phi') curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]] (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv) f = MV('f', 'scalar', fct=True) A = MV('A', 'vector', fct=True) B = MV('B', 'grade2', fct=True) assert str(f) == 'f' assert str(A) == 'A__r*e_r + A__theta*e_theta + A__phi*e_phi' assert str(B) == 'B__rtheta*e_r^e_theta + B__rphi*e_r^e_phi + B__thetaphi*e_theta^e_phi' assert str(grad*f) == 'D{r}f*e_r + D{theta}f/r*e_theta + D{phi}f/(r*sin(theta))*e_phi' assert str(grad | A) == 'D{r}A__r + 2*A__r/r + A__theta*cos(theta)/(r*sin(theta)) + D{theta}A__theta/r + D{phi}A__phi/(r*sin(theta))' assert str(-MV.I*(grad ^ A)) == '((A__phi*cos(theta)/sin(theta) + D{theta}A__phi - D{phi}A__theta/sin(theta))/r)*e_r + (-D{r}A__phi - A__phi/r + D{phi}A__r/(r*sin(theta)))*e_theta + (D{r}A__theta + A__theta/r - D{theta}A__r/r)*e_phi' assert str(grad ^ B) == '(D{r}B__thetaphi - B__rphi*cos(theta)/(r*sin(theta)) + 2*B__thetaphi/r - D{theta}B__rphi/r + D{phi}B__rtheta/(r*sin(theta)))*e_r^e_theta^e_phi' return
def test_reciprocal_frame_test(): GA_Printer.on() metric = '1 # #,' + \ '# 1 #,' + \ '# # 1,' (e1, e2, e3) = MV.setup('e1 e2 e3', metric) E = e1 ^ e2 ^ e3 Esq = (E * E).scalar() assert str(E) == 'e1^e2^e3' assert str( Esq ) == '(e1.e2)**2 - 2*(e1.e2)*(e1.e3)*(e2.e3) + (e1.e3)**2 + (e2.e3)**2 - 1' Esq_inv = 1 / Esq E1 = (e2 ^ e3) * E E2 = (-1) * (e1 ^ e3) * E E3 = (e1 ^ e2) * E assert str( E1 ) == '((e2.e3)**2 - 1)*e1 + ((e1.e2) - (e1.e3)*(e2.e3))*e2 + (-(e1.e2)*(e2.e3) + (e1.e3))*e3' assert str( E2 ) == '((e1.e2) - (e1.e3)*(e2.e3))*e1 + ((e1.e3)**2 - 1)*e2 + (-(e1.e2)*(e1.e3) + (e2.e3))*e3' assert str( E3 ) == '(-(e1.e2)*(e2.e3) + (e1.e3))*e1 + (-(e1.e2)*(e1.e3) + (e2.e3))*e2 + ((e1.e2)**2 - 1)*e3' w = (E1 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e3) w = w.expand() assert str(w) == '0' w = (E2 | e1) w = w.expand() assert str(w) == '0' w = (E2 | e3) w = w.expand() assert str(w) == '0' w = (E3 | e1) w = w.expand() assert str(w) == '0' w = (E3 | e2) w = w.expand() assert str(w) == '0' w = (E1 | e1) w = (w.expand()).scalar() Esq = expand(Esq) assert str(simplify(w / Esq)) == '1' w = (E2 | e2) w = (w.expand()).scalar() assert str(simplify(w / Esq)) == '1' w = (E3 | e3) w = (w.expand()).scalar() assert str(simplify(w / Esq)) == '1' GA_Printer.off() return
def test_noneuclidian_distance_calculation(): from sympy import solve, sqrt GA_Printer.on() metric = '0 # #,# 0 #,# # 1' (X, Y, e) = MV.setup('X Y e', metric) assert str((X ^ Y) * (X ^ Y)) == '(X.Y)**2' L = X ^ Y ^ e B = L * e assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' Bsq = B * B assert str(Bsq) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' Bsq = Bsq.scalar() assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' BeBr = B * e * B.rev() assert str(BeBr) == '((X.Y)*(-(X.Y) + 2*(X.e)*(Y.e)))*e' assert str(B * B) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' assert str(L * L) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' (s, c, Binv, M, BigS, BigC, alpha, XdotY, Xdote, Ydote) = symbols('s c (1/B) M S C alpha (X.Y) (X.e) (Y.e)') Bhat = Binv * B R = c + s * Bhat assert str(R) == 'c + (1/B)*s*X^Y - (1/B)*(Y.e)*s*X^e + (1/B)*(X.e)*s*Y^e' Z = R * X * R.rev() Z.obj = expand(Z.obj) Z.obj = Z.obj.collect([Binv, s, c, XdotY]) assert str( Z ) == '((1/B)**2*(X.Y)**2*s**2 - 2*(1/B)**2*(X.Y)*(X.e)*(Y.e)*s**2 + 2*(1/B)*(X.Y)*c*s - 2*(1/B)*(X.e)*(Y.e)*c*s + c**2)*X + 2*(1/B)*(X.e)**2*c*s*Y + (2*(1/B)*(X.Y)*(X.e)*s*(-(1/B)*(X.Y)*s + 2*(1/B)*(X.e)*(Y.e)*s - c))*e' W = Z | Y # From this point forward all calculations are with sympy scalars W = W.scalar() assert str( W ) == '(1/B)**2*(X.Y)**3*s**2 - 4*(1/B)**2*(X.Y)**2*(X.e)*(Y.e)*s**2 + 4*(1/B)**2*(X.Y)*(X.e)**2*(Y.e)**2*s**2 + 2*(1/B)*(X.Y)**2*c*s - 4*(1/B)*(X.Y)*(X.e)*(Y.e)*c*s + (X.Y)*c**2' W = expand(W) W = simplify(W) W = W.collect([s * Binv]) M = 1 / Bsq W = W.subs(Binv**2, M) W = simplify(W) Bmag = sqrt(XdotY**2 - 2 * XdotY * Xdote * Ydote) W = W.collect([Binv * c * s, XdotY]) #Double angle substitutions W = W.subs(2 * XdotY**2 - 4 * XdotY * Xdote * Ydote, 2 / (Binv**2)) W = W.subs(2 * c * s, BigS) W = W.subs(c**2, (BigC + 1) / 2) W = W.subs(s**2, (BigC - 1) / 2) W = simplify(W) W = expand(W) W = W.subs(1 / Binv, Bmag) assert str( W ) == '(X.Y)*C - (X.e)*(Y.e)*C + (X.e)*(Y.e) + S*sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd = collect(W, [BigC, BigS], exact=True, evaluate=False) Wd_1 = Wd[S.One] Wd_C = Wd[BigC] Wd_S = Wd[BigS] assert str(Wd_1) == '(X.e)*(Y.e)' assert str(Wd_C) == '(X.Y) - (X.e)*(Y.e)' assert str(Wd_S) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' assert str(Bmag) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd_1 = Wd_1.subs(Bmag, 1 / Binv) Wd_C = Wd_C.subs(Bmag, 1 / Binv) Wd_S = Wd_S.subs(Bmag, 1 / Binv) lhs = Wd_1 + Wd_C * BigC rhs = -Wd_S * BigS lhs = lhs**2 rhs = rhs**2 W = expand(lhs - rhs) W = expand(W.subs(1 / Binv**2, Bmag**2)) W = expand(W.subs(BigS**2, BigC**2 - 1)) W = W.collect([BigC, BigC**2], evaluate=False) a = simplify(W[BigC**2]) b = simplify(W[BigC]) c = simplify(W[S.One]) assert str(a) == '(X.e)**2*(Y.e)**2' assert str(b) == '2*(X.e)*(Y.e)*((X.Y) - (X.e)*(Y.e))' assert str(c) == '(X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e) + (X.e)**2*(Y.e)**2' x = Symbol('x') C = solve(a * x**2 + b * x + c, x)[0] assert str(expand(simplify(expand(C)))) == '-(X.Y)/((X.e)*(Y.e)) + 1' GA_Printer.off() return
def __str__(self): return GA_Printer().doprint(self)
def test_noneuclidian_distance_calculation(): from sympy import solve, sqrt GA_Printer.on() metric = '0 # #,# 0 #,# # 1' (X, Y, e) = MV.setup('X Y e', metric) assert str((X ^ Y)*(X ^ Y)) == '(X.Y)**2' L = X ^ Y ^ e B = L*e assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' Bsq = B*B assert str(Bsq) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' Bsq = Bsq.scalar() assert str(B) == 'X^Y - (Y.e)*X^e + (X.e)*Y^e' BeBr = B*e*B.rev() assert str(BeBr) == '((X.Y)*(-(X.Y) + 2*(X.e)*(Y.e)))*e' assert str(B*B) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' assert str(L*L) == '(X.Y)*((X.Y) - 2*(X.e)*(Y.e))' (s, c, Binv, M, BigS, BigC, alpha, XdotY, Xdote, Ydote) = symbols('s c (1/B) M S C alpha (X.Y) (X.e) (Y.e)') Bhat = Binv*B R = c + s*Bhat assert str(R) == 'c + (1/B)*s*X^Y - (1/B)*(Y.e)*s*X^e + (1/B)*(X.e)*s*Y^e' Z = R*X*R.rev() Z.obj = expand(Z.obj) Z.obj = Z.obj.collect([Binv, s, c, XdotY]) assert str(Z) == '((1/B)**2*(X.Y)**2*s**2 - 2*(1/B)**2*(X.Y)*(X.e)*(Y.e)*s**2 + 2*(1/B)*(X.Y)*c*s - 2*(1/B)*(X.e)*(Y.e)*c*s + c**2)*X + 2*(1/B)*(X.e)**2*c*s*Y + (2*(1/B)*(X.Y)*(X.e)*s*(-(1/B)*(X.Y)*s + 2*(1/B)*(X.e)*(Y.e)*s - c))*e' W = Z | Y # From this point forward all calculations are with sympy scalars W = W.scalar() assert str(W) == '(1/B)**2*(X.Y)**3*s**2 - 4*(1/B)**2*(X.Y)**2*(X.e)*(Y.e)*s**2 + 4*(1/B)**2*(X.Y)*(X.e)**2*(Y.e)**2*s**2 + 2*(1/B)*(X.Y)**2*c*s - 4*(1/B)*(X.Y)*(X.e)*(Y.e)*c*s + (X.Y)*c**2' W = expand(W) W = simplify(W) W = W.collect([s*Binv]) M = 1/Bsq W = W.subs(Binv**2, M) W = simplify(W) Bmag = sqrt(XdotY**2 - 2*XdotY*Xdote*Ydote) W = W.collect([Binv*c*s, XdotY]) #Double angle substitutions W = W.subs(2*XdotY**2 - 4*XdotY*Xdote*Ydote, 2/(Binv**2)) W = W.subs(2*c*s, BigS) W = W.subs(c**2, (BigC + 1)/2) W = W.subs(s**2, (BigC - 1)/2) W = simplify(W) W = expand(W) W = W.subs(1/Binv, Bmag) assert str(W) == '(X.Y)*C - (X.e)*(Y.e)*C + (X.e)*(Y.e) + S*sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd = collect(W, [BigC, BigS], exact=True, evaluate=False) Wd_1 = Wd[S.One] Wd_C = Wd[BigC] Wd_S = Wd[BigS] assert str(Wd_1) == '(X.e)*(Y.e)' assert str(Wd_C) == '(X.Y) - (X.e)*(Y.e)' assert str(Wd_S) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' assert str(Bmag) == 'sqrt((X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e))' Wd_1 = Wd_1.subs(Bmag, 1/Binv) Wd_C = Wd_C.subs(Bmag, 1/Binv) Wd_S = Wd_S.subs(Bmag, 1/Binv) lhs = Wd_1 + Wd_C*BigC rhs = -Wd_S*BigS lhs = lhs**2 rhs = rhs**2 W = expand(lhs - rhs) W = expand(W.subs(1/Binv**2, Bmag**2)) W = expand(W.subs(BigS**2, BigC**2 - 1)) W = W.collect([BigC, BigC**2], evaluate=False) a = simplify(W[BigC**2]) b = simplify(W[BigC]) c = simplify(W[S.One]) assert str(a) == '(X.e)**2*(Y.e)**2' assert str(b) == '2*(X.e)*(Y.e)*((X.Y) - (X.e)*(Y.e))' assert str(c) == '(X.Y)**2 - 2*(X.Y)*(X.e)*(Y.e) + (X.e)**2*(Y.e)**2' x = Symbol('x') C = solve(a*x**2 + b*x + c, x)[0] assert str(expand(simplify(expand(C)))) == '-(X.Y)/((X.e)*(Y.e)) + 1' GA_Printer.off() return