def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert len(p1) == 1 assert p1 in p1 assert p1 not in p2 assert p2[1] == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, 'Point(0,0) + 10')
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert len(p1) == 1 assert p1 in p1 assert p1 not in p2 assert p2[1] == y2 assert (p3+p4) == p4 assert (p2-p1) == Point(y1-x1, y2-x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, 'Point(0,0) + 10')
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x ** 2 + p2.y ** 2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) == False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol("x", real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) == False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) == False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x ** 2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2)
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2 * I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_point(): p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4 * 5 == Point(5, 5) assert -p2 == Point(-y1, -y2) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half * x1, half + half * x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x * (x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi / 2) == Point(0, 1) assert p.rotate(pi / 2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2)
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = Rational(1, 2) p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) assert Point.taxicab_distance(p4, p3) == 2 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False line = Line(Point(1,0), slope = 1) raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p1.dot(p4) == x1 + x2 assert p3.dot(p4) == 0 assert p4.dot(p5) == 1 x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_5) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(TypeError, lambda: Point(1)) raises(ValueError, lambda: Point([1])) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert p1.origin == Point(0, 0) assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) raises(TypeError, lambda: Point.distance(p1, 0)) raises(TypeError, lambda: Point.distance(p1, GeometryEntity())) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 raises(ValueError, lambda: Point.canberra_distance(p3, p3)) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning, test_stacklevel=False): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p3.intersection(line) == [] with warns(UserWarning, test_stacklevel=False): assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)] x_pos = Symbol('x', positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False assert p1.is_scalar_multiple(p1) assert p1.is_scalar_multiple(2*p1) assert not p1.is_scalar_multiple(p2) assert Point.is_scalar_multiple(Point(1, 1), (-1, -1)) assert Point.is_scalar_multiple(Point(0, 0), (0, -1)) # test when is_scalar_multiple can't be determined raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1))) assert Point(0, 1).orthogonal_direction == Point(1, 0) assert Point(1, 0).orthogonal_direction == Point(0, 1) assert p1.is_zero is None assert p3.is_zero assert p4.is_zero is False assert p1.is_nonzero is None assert p3.is_nonzero is False assert p4.is_nonzero assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test project assert Point.project((0, 1), (1, 0)) == Point(0, 0) assert Point.project((1, 1), (1, 0)) == Point(1, 0) raises(ValueError, lambda: Point.project(p1, Point(0, 0))) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # test __contains__ assert 0 in Point(0, 0, 0, 0) assert 1 not in Point(0, 0, 0, 0) # test affine_rank assert Point.affine_rank() == -1