def test_is_perpendicular(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line(Point(x1, x1), Point(y1, y1)) l1_1 = Line(p1, Point(-x1, x1)) # 2D assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # 3D assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D( 1, 0, 0)), Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D( 1, 0, 0)), Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False assert Line3D.is_perpendicular( Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = Rational(1, 2) p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4*5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) # according to the description in the docs, points are collinear # if they like on a single line. Thus a single point should always # be collinear assert Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(Point3D(1, 2, 3), 4, 5, evaluate=False) == Point3D(1, 2, 3) # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False raises(ValueError, lambda: Point3D.are_coplanar(p, planar2)) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) raises(ValueError, lambda: Point3D.are_coplanar(p, planar2, planar3)) # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_2d = Point(0, 0) raises(ValueError, lambda: (p - p_2d))
def test_issue_11617(): p1 = Point3D(1, 0, 2) p2 = Point2D(2, 0) with warns(UserWarning): assert p1.distance(p2) == sqrt(5)
def test_basic_properties_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) p5 = Point3D(x1, 1 + x1, 1) l1 = Line3D(p1, p2) l3 = Line3D(p3, p5) r1 = Ray3D(p1, Point3D(-1, 5, 0)) r3 = Ray3D(p1, p2) s1 = Segment3D(p1, p2) assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5)) assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8)) assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0)) assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0)) assert Line3D(p1, p2) != Line3D(p2, p1) assert l1 != l3 assert l1 != Line3D(p3, Point3D(y1, y1, y1)) assert r3 != r1 assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) assert p1 in l1 assert p1 not in l3 assert l1.direction_ratio == [1, 1, 1] assert s1.midpoint == Point3D(S.Half, S.Half, S.Half) # Test zdirection assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
def test_point3D(): p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4*5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) assert Point3D.is_collinear(p3) assert Point3D.is_collinear(p3, p4) assert Point3D.is_collinear(p3, p4, p1_1, p1_2) assert Point3D.is_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.is_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2)
def test_are_concurent_3d(): p1 = Point3D(0, 0, 0) l1 = Line(p1, Point3D(1, 1, 1)) parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0)) assert Line3D.are_concurrent(l1) is False assert Line3D.are_concurrent( l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False assert Line3D.are_concurrent( l1, Line3D(p1, Point3D(x1, x1, x1)), Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True assert Line3D.are_concurrent(parallel_1, parallel_2) is False
def test_issue_9214(): p1 = Point3D(4, -2, 6) p2 = Point3D(1, 2, 3) p3 = Point3D(7, 2, 3) assert Point3D.are_collinear(p1, p2, p3) is False
def test_plane(): x, y, z, u, v = symbols('x y z u v', real=True) p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(1, 2, 3) pl3 = Plane(p1, p2, p3) pl4 = Plane(p1, normal_vector=(1, 1, 1)) pl4b = Plane(p1, p2) pl5 = Plane(p3, normal_vector=(1, 2, 3)) pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2)) pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1)) pl8 = Plane(p1, normal_vector=(0, 0, 1)) pl9 = Plane(p1, normal_vector=(0, 12, 0)) pl10 = Plane(p1, normal_vector=(-2, 0, 0)) pl11 = Plane(p2, normal_vector=(0, 0, 1)) l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) assert Plane(p1, p2, p3) != Plane(p1, p3, p2) assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2)) assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1)) assert pl3 != pl4 assert pl4 == pl4b assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3)) assert pl5.equation(x, y, z) == x + 2 * y + 3 * z - 14 assert pl3.equation(x, y, z) == x - 2 * y + z assert pl3.p1 == p1 assert pl4.p1 == p1 assert pl5.p1 == p3 assert pl4.normal_vector == (1, 1, 1) assert pl5.normal_vector == (1, 2, 3) assert p1 in pl3 assert p1 in pl4 assert p3 in pl5 assert pl3.projection(Point(0, 0)) == p1 p = pl3.projection(Point3D(1, 1, 0)) assert p == Point3D(7 / 6, 2 / 3, 1 / 6) assert p in pl3 l = pl3.projection_line(Line(Point(0, 0), Point(1, 1))) assert l == Line3D(Point3D(0, 0, 0), Point3D(7 / 6, 2 / 3, 1 / 6)) assert l in pl3 # get a segment that does not intersect the plane which is also # parallel to pl3's normal veector t = Dummy() r = pl3.random_point() a = pl3.perpendicular_line(r).arbitrary_point(t) s = Segment3D(a.subs(t, 1), a.subs(t, 2)) assert s.p1 not in pl3 and s.p2 not in pl3 assert pl3.projection_line(s).equals(r) assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \ Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6)) assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \ Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3)) assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r) assert pl3.is_parallel(pl6) is False assert pl4.is_parallel(pl6) assert pl6.is_parallel(l1) is False assert pl3.is_perpendicular(pl6) assert pl4.is_perpendicular(pl7) assert pl6.is_perpendicular(pl7) assert pl6.is_perpendicular(l1) is False assert pl6.distance(pl6.arbitrary_point(u, v)) == 0 assert pl7.distance(pl7.arbitrary_point(u, v)) == 0 assert pl6.distance(pl6.arbitrary_point(t)) == 0 assert pl7.distance(pl7.arbitrary_point(t)) == 0 assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1 assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1 assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \ 2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6) assert pl3.arbitrary_point(u, v) == Point3D(2 * u - v, u + 2 * v, 5 * v) assert pl7.distance(Point3D(1, 3, 5)) == 5 * sqrt(6) / 6 assert pl6.distance(Point3D(0, 0, 0)) == 4 * sqrt(3) assert pl6.distance(pl6.p1) == 0 assert pl7.distance(pl6) == 0 assert pl7.distance(l1) == 0 assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0 pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3) assert pl6.angle_between(pl3) == pi / 2 assert pl6.angle_between(pl6) == 0 assert pl6.angle_between(pl4) == 0 assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \ -asin(sqrt(3)/6) assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \ asin(sqrt(7)/3) assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \ asin(7*sqrt(246)/246) assert are_coplanar(l1, l2, l3) is False assert are_coplanar(l1) is False assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2), Point3D(1, 2, 2)) assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2)) assert Plane.are_concurrent(pl3, pl4, pl5) is False assert Plane.are_concurrent(pl6) is False raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0))) raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0))) assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \ normal_vector=(1, -2, 1)) # perpendicular_plane p = Plane((0, 0, 0), (1, 0, 0)) # default assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0)) # 1 pt assert p.perpendicular_plane(Point3D(1, 0, 1)) == \ Plane(Point3D(1, 0, 1), (0, 1, 0)) # pts as tuples assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \ Plane(Point3D(1, 0, 1), (0, 0, -1)) a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) Z = (0, 0, 1) p = Plane(a, normal_vector=Z) # case 4 assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0)) n = Point3D(*Z) # case 1 assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0)) # case 2 assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \ Plane(Point3D(0, 0, 0), (1, 0, 0)) # case 1&3 assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \ Plane(Point3D(0, 1, 0), (-1, 0, 0)) # case 2&3 assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \ Plane(Point3D(0, 0, 1), (1, 0, 0)) assert pl6.intersection(pl6) == [pl6] assert pl4.intersection(pl4.p1) == [pl4.p1] assert pl3.intersection(pl6) == [ Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)) ] assert pl3.intersection(Line3D(Point3D(1, 2, 4), Point3D(4, 4, 2))) == [Point3D(2, 8 / 3, 10 / 3)] assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))) == [ Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1)) ] assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)] assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [Point3D(-1, 3, 10)] assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [Point3D(13 / 2, 3 / 4, 0)] r = Ray(Point(2, 3), Point(4, 2)) assert Plane((1, 2, 0), normal_vector=(0, 0, 1)).intersection(r) == [ Ray3D(Point(2, 3), Point(4, 2)) ] assert pl9.intersection(pl8) == [ Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0)) ] assert pl10.intersection(pl11) == [ Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1)) ] assert pl4.intersection(pl8) == [ Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0)) ] assert pl11.intersection(pl8) == [] assert pl9.intersection(pl11) == [ Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1)) ] assert pl9.intersection(pl4) == [ Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12)) ] assert pl3.random_point() in pl3 # test geometrical entity using equals assert pl4.intersection(pl4.p1)[0].equals(pl4.p1) assert pl3.intersection(pl6)[0].equals( Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))) pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1)) assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals( Line((0, 0, 0), (0.1, 1.2, 0))) assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals( Ray((0, 0, 0), (1, 12, 0))) assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals( Segment3D(p1, (21, 1, 0))) assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8) assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals( Line3D(p1, direction_ratio=(112 * pi, 0, 0))) assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals( Line3D(p1, direction_ratio=(0, -11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals( Line3D(p1, direction_ratio=(0, 11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals( Line3D(p1, direction_ratio=(1, -1, 0))) assert pl3.random_point() in pl3 assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) is 0 # check if two plane are equals assert pl6.intersection(pl6)[0].equals(pl6) assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False assert pl8.equals(pl8) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12))) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12 * sqrt(3)))) # issue 8570 l2 = Line3D( Point3D( S(50000004459633) / 5000000000000, -S(891926590718643) / 1000000000000000, S(231800966893633) / 100000000000000), Point3D( S(50000004459633) / 50000000000000, -S(222981647679771) / 250000000000000, S(231800966893633) / 100000000000000)) p2 = Plane( Point3D( S(402775636372767) / 100000000000000, -S(97224357654973) / 100000000000000, S(216793600814789) / 100000000000000), (-S('9.00000087501922'), -S('4.81170658872543e-13'), S('0.0'))) assert str([i.n(2) for i in p2.intersection(l2)]) == \ '[Point3D(4.0, -0.89, 2.3)]'
def plot_molecule(molecule_name, structures_df): """ INPUT: molecule_name: name of the molecule from the structures DataFrame structures_df: structures DataFrame OUTPUT: fig: 3D plotly figure to visualize the chosen molecule """ radius = dict(C=0.77, F=0.71, H=0.38, N=0.75, O=0.73) element_colors = dict(C='black', F='green', H='white', N='blue', O='red') molecule_df = structures_df[structures_df['molecule_name'] == molecule_name] x = molecule_df['x'].values y = molecule_df['y'].values z = molecule_df['z'].values elements = molecule_df['atom'].values r = [radius[e] for e in elements] coordinates = pd.DataFrame([x,y,z]).T def get_bonds(): """Generates a set of bonds from atomic cartesian coordinates""" ids = np.arange(coordinates.shape[0]) bonds = dict() coordinates_compare, radii_compare, ids_compare = coordinates, r, ids for _ in range(len(ids)): coordinates_compare = np.roll(coordinates_compare, -1, axis=0) radii_compare = np.roll(radii_compare, -1, axis=0) ids_compare = np.roll(ids_compare, -1, axis=0) distances = np.linalg.norm(coordinates - coordinates_compare, axis=1) bond_distances = (r + radii_compare) * 1.3 mask = np.logical_and(distances > 0.1, distances < bond_distances) distances = distances.round(2) new_bonds = {frozenset([i, j]): dist for i, j, dist in zip(ids[mask], ids_compare[mask], distances[mask])} bonds.update(new_bonds) return bonds def get_bond_trace(): bond_trace = go.Scatter3d(x=[], y=[], z=[], hoverinfo='none', mode='lines', marker=dict(color='grey', size=7, opacity=1)) for i,j in bonds.keys(): bond_trace['x'] += (x[i], x[j], None) bond_trace['y'] += (y[i], y[j], None) bond_trace['z'] += (z[i], z[j], None) return bond_trace def get_atom_trace(): """Creates an atom trace for the plot""" colors = [element_colors[element] for element in elements] markers = dict(color=colors, line=dict(color='lightgray', width=2), size=10, symbol='circle', opacity=0.8) trace = go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=markers, text=elements, name='', hoverlabel=dict(bgcolor=colors)) return trace bonds = get_bonds() annotations_length = [] for (i, j), dist in bonds.items(): p_i, p_j = Point3D(coordinates.values[i]), Point3D(coordinates.values[j]) p = p_i.midpoint(p_j) annotation = dict(text=dist, x=float(p.x), y=float(p.y), z=float(p.z), showarrow=False, yshift=15) annotations_length.append(annotation) data = [get_atom_trace(), get_bond_trace()] axis_params = dict(showgrid=False, showbackground=False, showticklabels=False, zeroline=False, titlefont=dict(color='white')) layout = dict(scene=dict(xaxis=axis_params, yaxis=axis_params, zaxis=axis_params), margin=dict(r=0, l=0, b=0, t=0), showlegend=False, annotations=[ go.layout.Annotation( text='Molecule Name:<br>{}'.format(molecule_name), align='left', showarrow=False, xref='paper', yref='paper', x=0.95, y=0.95, bordercolor='black', borderwidth=1 ) ]) fig = go.Figure(data=data, layout=layout) return fig
def test_point3D(): p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4 * 5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half * x1, half + half * x2, half + half * x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) assert Point3D.is_collinear(p3) assert Point3D.is_collinear(p3, p4) assert Point3D.is_collinear(p3, p4, p1_1, p1_2) assert Point3D.is_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.is_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2)
def test_line3d(): x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) k = Symbol('k', real=True) x1 = Symbol('x1', real=True) y1 = Symbol('y1', real=True) p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) p4 = Point3D(y1, y1, y1) p5 = Point3D(x1, 1 + x1, 1) p6 = Point3D(1, 0, 1) p7 = Point3D(0, 1, 1) p8 = Point3D(2, 0, 3) p9 = Point3D(2, 1, 4) l1 = Line3D(p1, p2) l2 = Line3D(p3, p4) l3 = Line3D(p3, p5) l4 = Line3D(p1, p6) l5 = Line3D(p1, p7) l6 = Line3D(p8, p9) l7 = Line3D(p2, p9) raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0))) assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == \ Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5)) assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7 ]) == \ Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8)) assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == \ Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) raises(TypeError, lambda: Line3D((1, 1), 1)) assert Line3D(p1, p2) != Line3D(p2, p1) assert l1 != l3 assert l1.is_parallel(l1) # same as in 2D assert l1 != l2 assert l1.direction_ratio == [1, 1, 1] assert l1.length == oo assert l1.equation() == (x, y, z, k) assert l2.equation() == \ ((x - x1)/(-x1 + y1), (-x1 + y)/(-x1 + y1), (-x1 + z)/(-x1 + y1), k) assert p1 in l1 assert p1 not in l3 # Orthogonality p1_1 = Point3D(x1, x1, x1) l1_1 = Line3D(p1, p1_1) assert Line3D.is_perpendicular(l1, l2) is False p = l1.arbitrary_point() raises(NotImplementedError, lambda: l1.perpendicular_segment(p)) # Parallelity assert l1.parallel_line(p1_1) == Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert l1.parallel_line(p1_1.args) == \ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) # Intersection assert intersection(l1, p1) == [p1] assert intersection(l1, p5) == [] assert intersection(l1, l1.parallel_line(p1)) == [ Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) ] # issue 8517 line3 = Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)) line4 = Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1)) assert line3.intersection(line4) == [Point3D(2, 2, 1)] assert line3.is_parallel(line4) is False assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [] ray0 = Ray3D((0, 0), (3, 0)) ray1 = Ray3D((1, 0), (3, 0)) assert ray0.intersection(ray1) == [ray1] assert ray1.intersection(ray0) == [ray1] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection(Segment3D( (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (0, 0))) == [Point3D(0, 0, 0)] # issue 7757 p = Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)) q = Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0)) assert intersection(p, q) == [Point3D(0, 0, 0)] # Concurrency assert Line3D.are_concurrent(l1) is False assert Line3D.are_concurrent(l1, l2) assert Line3D.are_concurrent(l1, l1_1, l3) is False parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0)) assert Line3D.are_concurrent(parallel_1, parallel_2) == False # Finding angles l1_1 = Line3D(p1, Point3D(5, 0, 0)) assert Line3D.angle_between(l1, l1_1), acos(sqrt(3) / 3) # Testing Rays and Segments (very similar to Lines) assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == \ Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5)) assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == \ Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == \ Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) r1 = Ray3D(p1, Point3D(-1, 5, 0)) r2 = Ray3D(p1, Point3D(-1, 1, 1)) r3 = Ray3D(p1, p2) r4 = Ray3D(p2, p1) r5 = Ray3D(Point3D(0, 1, 1), Point3D(1, 2, 0)) assert l1.projection(r1) == [ Ray3D(Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3)) ] assert l1.projection(r2) == [ Ray3D(Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3)) ] assert r3 != r1 t = Symbol('t', real=True) assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \ Point3D(t + 1, 2*t + 1, 3*t + 1) r6 = Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)) r7 = Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1)) assert r6.intersection(r7) == [] s1 = Segment3D(p1, p2) s2 = Segment3D(p3, p4) assert s1.midpoint == \ Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2)) assert s2.length == sqrt(3) * sqrt((x1 - y1)**2) assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \ Point3D(t + 1, 2*t + 1, 3*t + 1) # Segment contains s = Segment3D((0, 1, 0), (0, 1, 0)) assert Point3D(0, 1, 0) in s s = Segment3D((1, 0, 0), (1, 0, 0)) assert Point3D(1, 0, 0) in s # Testing distance from a Segment to an object s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) s2 = Segment3D(Point3D(1 / 2, 1 / 2, 1 / 2), Point3D(1, 0, 1)) pt1 = Point3D(0, 0, 0) pt2 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2) assert s1.distance(pt1) == 0 assert s2.distance(pt1) == sqrt(3) / 2 assert s2.distance(pt2) == 2 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 # Line to point p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) s = Line3D(p1, p2) assert s.distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3 assert s.distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3 assert s.distance(Point3D(2, 2, 2)) == 0 assert s.distance((2, 2, 2)) == 0 assert s.distance((1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2) assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2) # Ray to point r = Ray3D(p1, p2) assert r.distance(Point3D(-1, -1, -1)) == sqrt(3) assert r.distance(Point3D(1, 1, 1)) == 0 assert r.distance((-1, -1, -1)) == sqrt(3) assert r.distance((1, 1, 1)) == 0 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == \ sqrt(17)/2 # Special cases of projection and intersection r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) r2 = Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0)) r3 = Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1)) r4 = Ray3D(Point3D(0, 4, 2), Point3D(-1, -5, -1)) r5 = Ray3D(Point3D(2, 2, 2), Point3D(3, 3, 3)) assert intersection(r1, r2) == \ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(r1, r3) == [Point3D(1, 1, 1)] r5 = Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) r6 = Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) assert r5 in r6 assert r6 in r5 s1 = Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) s2 = Segment3D(Point3D(-1, 5, 2), Point3D(-5, -10, 0)) assert intersection(r1, s1) == [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] l1 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) r1 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) assert intersection(l1, r1) == [r1] assert intersection(l1, s1) == [s1] assert intersection(r1, l1) == [r1] assert intersection(s1, r1) == [s1] # check that temporary symbol is Dummy assert Line3D((0, 0), (t, t)).perpendicular_line((0, 1)) == \ Line3D(Point3D(0, 1, 0), Point3D(1/2, 1/2, 0)) assert Line3D((0, 0), (t, t)).perpendicular_segment((0, 1)) == \ Segment3D(Point3D(0, 1, 0), Point3D(1/2, 1/2, 0)) assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \ [Point3D(t, t, 0)] assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z)) # Test is_perpendicular perp_1 = Line3D(p1, Point3D(0, 1, 0)) assert Line3D.is_perpendicular(parallel_1, perp_1) is True assert Line3D.is_perpendicular(parallel_1, parallel_2) is False # Test projection assert parallel_1.projection(Point3D(5, 5, 0)) == Point3D(5, 0, 0) assert parallel_1.projection(parallel_2) == [parallel_1] raises(GeometryError, lambda: parallel_1.projection(Plane(p1, p2, p6))) # Test __new__ assert Line3D(perp_1) == perp_1 raises(ValueError, lambda: Line3D(p1)) # Test contains pt2d = Point(1.0, 1.0) assert perp_1.contains(pt2d) is False # Test equals assert perp_1.equals(pt2d) is False col1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) col2 = Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0)) assert col1.equals(col2) is True assert col1.equals(perp_1) is False # Begin ray # Test __new__ assert Ray3D(col1) == Ray3D(p1, Point3D(1, 0, 0)) raises(ValueError, lambda: Ray3D(pt2d)) # Test zdirection negz = Ray3D(p1, Point3D(0, 0, -1)) assert negz.zdirection == S.NegativeInfinity # Test contains assert negz.contains(Segment3D(p1, Point3D(0, 0, -10))) is True assert negz.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False posy = Ray3D(p1, Point3D(0, 1, 0)) posz = Ray3D(p1, Point3D(0, 0, 1)) assert posy.contains(p1) is True assert posz.contains(p1) is True assert posz.contains(pt2d) is False ray1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)) raises(TypeError, lambda: ray1.contains([])) # Test equals assert negz.equals(pt2d) is False assert negz.equals(negz) is True assert ray1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True assert ray1.is_similar(perp_1) is False raises(NotImplementedError, lambda: ray1.is_similar(ray1)) # Begin Segment seg1 = Segment3D(p1, Point3D(1, 0, 0)) raises(TypeError, lambda: seg1.contains([])) seg2 = Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2)) assert seg1.contains(seg2) is False
def test_issue_8615(): a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0)) b = Line3D(Point3D(6, -1, 19 / 10), Point3D(6, -1, 0)) assert a.intersection(b) == [Point3D(6, -1, 0)]
def test_bisectors(): r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0)) bisections = r1.bisectors(r2) assert bisections == [ Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0)) ] ans = [ Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)), Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1)) ] l1 = (0, 0, 0), (0, 0, 1) l2 = (0, 0), (1, 0) for a, b in cartes((Line, Segment, Ray), repeat=2): assert a(*l1).bisectors(b(*l2)) == ans
def test_direction_cosine(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1] assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1] assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2) / 2, sqrt(2) / 2, 0] assert p1.direction_cosine(Point3D( 1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3] assert p1.direction_cosine(Point3D( -12, 0 - 15)) == [-4 * sqrt(41) / 41, -5 * sqrt(41) / 41, 0] assert p2.direction_cosine(Point3D( 0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3] assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1] assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
def test_length(): s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)) assert Line(Point(0, 0), Point(1, 1)).length == oo assert s2.length == sqrt(3) * sqrt((x1 - y1)**2) assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point( 2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D( (1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D( (0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection(Segment3D( (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point( 1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2] assert asa(120, 8, 52) == \ Triangle( Point(0, 0), Point(8, 0), Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45), 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45))) assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10)) # 16628 - this should be fast p0 = Point2D(S(249) / 5, S(497999) / 10000) p1 = Point2D( (-58977084786 * sqrt(405639795226) + 2030690077184193 + 20112207807 * sqrt(630547164901) + 99600 * sqrt(255775022850776494562626)) / (2000 * sqrt(255775022850776494562626) + 1991998000 * sqrt(405639795226) + 1991998000 * sqrt(630547164901) + 1622561172902000), (-498000 * sqrt(255775022850776494562626) - 995999 * sqrt(630547164901) + 90004251917891999 + 496005510002 * sqrt(405639795226)) / (10000 * sqrt(255775022850776494562626) + 9959990000 * sqrt(405639795226) + 9959990000 * sqrt(630547164901) + 8112805864510000)) p2 = Point2D(S(497) / 10, -S(497) / 10) p3 = Point2D(-S(497) / 10, -S(497) / 10) l = Line(p0, p1) s = Segment(p2, p3) n = (-52673223862 * sqrt(405639795226) - 15764156209307469 - 9803028531 * sqrt(630547164901) + 33200 * sqrt(255775022850776494562626)) d = sqrt(405639795226) + 315274080450 + 498000 * sqrt(630547164901) + sqrt( 255775022850776494562626) assert intersection(l, s) == [Point2D(n / d * S(3) / 2000, -S(497) / 10)]
def test_projection(): p1 = Point(0, 0) p2 = Point3D(0, 0, 0) p3 = Point(-x1, x1) l1 = Line(p1, Point(1, 1)) l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) l3 = Line3D(p2, Point3D(1, 1, 1)) r1 = Ray(Point(1, 1), Point(2, 2)) assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1) assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert l1.projection(p3) == p1 assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(Ray(p1, Point(-1, 1))) == p1 assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment( Point(1, 1), Point(2, 2)) assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment( Point(1, 1), Point(2, 2)) assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D( Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3)) assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D( Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3)) assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0) assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
def test_distance_3d(): p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2) s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) s2 = Segment3D(Point3D(1 / 2, 1 / 2, 1 / 2), Point3D(1, 0, 1)) r = Ray3D(p1, p2) assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 # Line to point assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0 assert Line3D(p1, p2).distance((2, 2, 2)) == 0 assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2) assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2) # Ray to point assert r.distance(Point3D(-1, -1, -1)) == sqrt(3) assert r.distance(Point3D(1, 1, 1)) == 0 assert r.distance((-1, -1, -1)) == sqrt(3) assert r.distance((1, 1, 1)) == 0 assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = Rational(1, 2) p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4*5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warnings.catch_warnings(record=True) as w: raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warnings.catch_warnings(record=True) as w: assert p - p_4d == Point(1, 1, 1, -1) assert len(w) == 1 p_4d3d = Point(0, 0, 1, 0) with warnings.catch_warnings(record=True) as w: assert p - p_4d3d == Point(1, 1, 0, 0) assert len(w) == 1
def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m**2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals( Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals( Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(1 / 2, 1 / 2, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals( Segment3D((0, 1), (1 / 2, 1 / 2))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1,2), [1,2], Point(1,2)) singles2d2 = ((1,3), [1,3], Point(1,3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1,2) singles3d = ((1,2,3), [1,2,3], Point(1,2,3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1,2,3) singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4)) doubles4d = subsets(singles4d, 2) p4d = Point(1,2,3,4) # test 2D test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__'] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles2d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x) a = Point(0, 1) assert a/10.0 == Point(0.0, 0.1) a = Point(0, 1) assert a*10.0 == Point(0.0, 10.0) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error')
def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point( 2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D( (1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D( (0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection(Segment3D( (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection(Segment3D( (-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point( 1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point( 0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2]
def test_contains(): p1 = Point(0, 0) r = Ray(p1, Point(4, 4)) r1 = Ray3D(p1, Point3D(0, 0, -1)) r2 = Ray3D(p1, Point3D(0, 1, 0)) r3 = Ray3D(p1, Point3D(0, 0, 1)) l = Line(Point(0, 1), Point(3, 4)) # Segment contains assert Point(0, (a + b) / 2) in Segment((0, a), (0, b)) assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0)) assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0)) assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0)) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains( Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False # Line contains assert l.contains(Point(0, 1)) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False # Ray contains assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False assert r.contains(Segment((1, 1), (2, 2))) is True assert r.contains(Segment((1, 2), (2, 5))) is False assert r.contains(Ray((2, 2), (3, 3))) is True assert r.contains(Ray((2, 2), (3, 5))) is False assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False assert r2.contains(Point3D(0, 0, 0)) is True assert r3.contains(Point3D(0, 0, 0)) is True assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z)) with warns(UserWarning): assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False with warns(UserWarning): assert r3.contains(Point(1.0, 1.0)) is False
def test_intersection_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) l1 = Line3D(p1, p2) l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point3D(x1, 1 + x1, 1)) == [] assert intersection(l1, l1.parallel_line(p1)) == [ Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) ] assert intersection(l2, r2) == [r2] assert intersection(l2, s1) == [s1] assert intersection(r2, l2) == [r2] assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)] assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D( 2, 2, 2))) == [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \ == [Point3D(0, 0, 0)] assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(s1, r2) == [s1] assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \ [Point3D(2, 2, 1)] assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D( (0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)] assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \ [Point3D(t, t)] assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection( Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
def test_is_parallel(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) l2 = Line(Point(x1, x1), Point(y1, y1)) l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2) assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1))) assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0))) assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel( Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False assert Line3D(p1, p2).parallel_line(p3) == Line3D( Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(p1, p2).parallel_line(p3.args) == \ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel( Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
def test_point3D(): p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4 * 5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half * x1, half + half * x2, half + half * x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) # according to the description in the docs, points are collinear # if they like on a single line. Thus a single point should always # be collinear assert Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(Point3D(1, 2, 3), 4, 5, evaluate=False) == Point3D(1, 2, 3) # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False raises(ValueError, lambda: Point3D.are_coplanar(p, planar2)) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) raises(ValueError, lambda: Point3D.are_coplanar(p, planar2, planar3)) # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_2d = Point(0, 0) raises(ValueError, lambda: (p - p_2d))