Esempio n. 1
0
def test_from_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = hyper([1, 1], [S(3)/2], x**2/4)
    q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + 4/3])
    r = from_hyper(p)
    assert r == q
    p = from_hyper(hyper([1], [S(3)/2], x**2/4))
    q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
    x0 = 1
    y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
    assert sstr(p.y0) == y0
    assert q.annihilator == p.annihilator
Esempio n. 2
0
def test_from_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = hyper([1, 1], [S(3)/2], x**2/4)
    q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + 4/3])
    r = from_hyper(p)
    assert r == q
    p = from_hyper(hyper([1], [S(3)/2], x**2/4))
    q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
    x0 = 1
    y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
    assert sstr(p.y0) == y0
    assert q.annihilator == p.annihilator
Esempio n. 3
0
def test_to_expr():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
    q = exp(x)
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
    q = cos(x)
    assert p == q
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
    q = cosh(x)
    assert p == q
    p = HolonomicFunction(2 + (4*x - 1)*Dx + \
        (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
    q = 1/(x**2 - 2*x + 1)
    assert p == q
    p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr()
    q = (sin(x)**2/x).integrate((x, 0, x))
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1+x**2)).to_expr()
    q = C_2*log(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(log(1+x**2)).diff().to_expr()
    q = C_0*x/(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).to_expr()
    q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi)
    assert p == q
    p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
    assert p == sqrt(x)
    assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
    p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
    assert p == sqrt(1+x**2)
    p = expr_to_holonomic((2*x**2 + 1)**(S(2)/3)).to_expr()
    assert p == (2*x**2 + 1)**(S(2)/3)
    p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr()
    assert p == sqrt(x)*sqrt(-x + 2)
    p = expr_to_holonomic((-2*x**3+7*x)**(S(2)/3)).to_expr()
    q = x**(S(2)/3)*(-2*x**2 + 7)**(S(2)/3)
    assert p == q
    p = from_hyper(hyper((-2, -3), (S(1)/2, ), x))
    s = hyperexpand(hyper((-2, -3), (S(1)/2, ), x))
    D_0 = Symbol('D_0')
    C_0 = Symbol('C_0')
    assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0
    p.y0 = {0: [1], S(1)/2: [0]}
    assert p.to_expr() == s
    assert expr_to_holonomic(x**5).to_expr() == x**5
    assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
        2*x**3-3*x**2
    a = symbols("a")
    p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr()
    q = 1.4*a*x**2
    assert p == q
    p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr()
    q = x*(a + 1.4)
    assert p == q
    p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr()
    assert p == 2.4*x
Esempio n. 4
0
def test_to_expr():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
    q = exp(x)
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
    q = cos(x)
    assert p == q
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
    q = cosh(x)
    assert p == q
    p = HolonomicFunction(2 + (4*x - 1)*Dx + \
        (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
    q = 1 / (x**2 - 2 * x + 1)
    assert p == q
    p = expr_to_holonomic(sin(x)**2 / x).integrate((x, 0, x)).to_expr()
    q = (sin(x)**2 / x).integrate((x, 0, x))
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1 + x**2)).to_expr()
    q = C_2 * log(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(log(1 + x**2)).diff().to_expr()
    q = C_0 * x / (x**2 + 1)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).to_expr()
    q = 3 * C_3 * x - 3 * sqrt(pi) * C_3 * erf(x) / 2 + x + 2 * x / sqrt(pi)
    assert p == q
    p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
    assert p == sqrt(x)
    assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
    p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
    assert p == sqrt(1 + x**2)
    p = expr_to_holonomic((2 * x**2 + 1)**Rational(2, 3)).to_expr()
    assert p == (2 * x**2 + 1)**Rational(2, 3)
    p = expr_to_holonomic(sqrt(-x**2 + 2 * x)).to_expr()
    assert p == sqrt(x) * sqrt(-x + 2)
    p = expr_to_holonomic((-2 * x**3 + 7 * x)**Rational(2, 3)).to_expr()
    q = x**Rational(2, 3) * (-2 * x**2 + 7)**Rational(2, 3)
    assert p == q
    p = from_hyper(hyper((-2, -3), (S.Half, ), x))
    s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
    D_0 = Symbol('D_0')
    C_0 = Symbol('C_0')
    assert (p.to_expr().subs({C_0: 1, D_0: 0}) - s).simplify() == 0
    p.y0 = {0: [1], S.Half: [0]}
    assert p.to_expr() == s
    assert expr_to_holonomic(x**5).to_expr() == x**5
    assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
        2*x**3-3*x**2
    a = symbols("a")
    p = (expr_to_holonomic(1.4 * x) * expr_to_holonomic(a * x, x)).to_expr()
    q = 1.4 * a * x**2
    assert p == q
    p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(a * x, x)).to_expr()
    q = x * (a + 1.4)
    assert p == q
    p = (expr_to_holonomic(1.4 * x) + expr_to_holonomic(x)).to_expr()
    assert p == 2.4 * x
Esempio n. 5
0
def test_to_meijerg():
    x = symbols('x')
    assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
    assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
    assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
    assert hyperexpand(expr_to_holonomic(
        log(x)).to_meijerg()).simplify() == log(x)
    assert expr_to_holonomic(4 * x**2 / 3 + 7).to_meijerg() == 4 * x**2 / 3 + 7
    assert hyperexpand(
        expr_to_holonomic(besselj(2, x),
                          lenics=3).to_meijerg()) == besselj(2, x)
    p = hyper((-S(1) / 2, -3), (), x)
    assert from_hyper(p).to_meijerg() == hyperexpand(p)
    p = hyper((S(1), S(3)), (S(2), ), x)
    assert (hyperexpand(from_hyper(p).to_meijerg()) -
            hyperexpand(p)).expand() == 0
    p = from_hyper(hyper((-2, -3), (S(1) / 2, ), x))
    s = hyperexpand(hyper((-2, -3), (S(1) / 2, ), x))
    C_0 = Symbol('C_0')
    C_1 = Symbol('C_1')
    D_0 = Symbol('D_0')
    assert (hyperexpand(p.to_meijerg()).subs({
        C_0: 1,
        D_0: 0
    }) - s).simplify() == 0
    p.singular_ics = [(0, [1]), (S(1) / 2, [0])]
    assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
    p = expr_to_holonomic(besselj(S(1) / 2, x), initcond=False)
    assert (
        p.to_expr() -
        (D_0 * sin(x) + C_0 * cos(x) + C_1 * sin(x)) / sqrt(x)).simplify() == 0
    p = expr_to_holonomic(
        besselj(S(1) / 2, x),
        singular_ics=((S(-1) / 2, [sqrt(2) / sqrt(pi),
                                   sqrt(2) / sqrt(pi)]), ))
    assert (p.to_expr() - besselj(S(1) / 2, x) -
            besselj(S(-1) / 2, x)).simplify() == 0
Esempio n. 6
0
def test_to_meijerg():
    x = symbols('x')
    assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
    assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
    assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
    assert hyperexpand(expr_to_holonomic(
        log(x)).to_meijerg()).simplify() == log(x)
    assert expr_to_holonomic(4 * x**2 / 3 + 7).to_meijerg() == 4 * x**2 / 3 + 7
    assert hyperexpand(
        expr_to_holonomic(besselj(2, x),
                          lenics=3).to_meijerg()) == besselj(2, x)
    p = hyper((Rational(-1, 2), -3), (), x)
    assert from_hyper(p).to_meijerg() == hyperexpand(p)
    p = hyper((S.One, S(3)), (S(2), ), x)
    assert (hyperexpand(from_hyper(p).to_meijerg()) -
            hyperexpand(p)).expand() == 0
    p = from_hyper(hyper((-2, -3), (S.Half, ), x))
    s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
    C_0 = Symbol('C_0')
    C_1 = Symbol('C_1')
    D_0 = Symbol('D_0')
    assert (hyperexpand(p.to_meijerg()).subs({
        C_0: 1,
        D_0: 0
    }) - s).simplify() == 0
    p.y0 = {0: [1], S.Half: [0]}
    assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
    p = expr_to_holonomic(besselj(S.Half, x), initcond=False)
    assert (
        p.to_expr() -
        (D_0 * sin(x) + C_0 * cos(x) + C_1 * sin(x)) / sqrt(x)).simplify() == 0
    p = expr_to_holonomic(
        besselj(S.Half, x),
        y0={Rational(-1, 2): [sqrt(2) / sqrt(pi),
                              sqrt(2) / sqrt(pi)]})
    assert (p.to_expr() - besselj(S.Half, x) -
            besselj(Rational(-1, 2), x)).simplify() == 0
Esempio n. 7
0
def test_to_meijerg():
    x = symbols('x')
    assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
    assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
    assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
    assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x)
    assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7
    assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x)
    p = hyper((-S(1)/2, -3), (), x)
    assert from_hyper(p).to_meijerg() == hyperexpand(p)
    p = hyper((S(1), S(3)), (S(2), ), x)
    assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0
    p = from_hyper(hyper((-2, -3), (S(1)/2, ), x))
    s = hyperexpand(hyper((-2, -3), (S(1)/2, ), x))
    C_0 = Symbol('C_0')
    C_1 = Symbol('C_1')
    D_0 = Symbol('D_0')
    assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0
    p.y0 = {0: [1], S(1)/2: [0]}
    assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
    p = expr_to_holonomic(besselj(S(1)/2, x), initcond=False)
    assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0
    p = expr_to_holonomic(besselj(S(1)/2, x), y0={S(-1)/2: [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]})
    assert (p.to_expr() - besselj(S(1)/2, x) - besselj(S(-1)/2, x)).simplify() == 0
Esempio n. 8
0
def test_to_expr():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, 1).to_expr()
    q = exp(x)
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
    q = cos(x)
    assert p == q
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
    q = cosh(x)
    assert p == q
    p = HolonomicFunction(2 + (4*x - 1)*Dx + \
        (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
    q = 1 / (x**2 - 2 * x + 1)
    assert p == q
    p = expr_to_holonomic(sin(x)**2 / x).integrate((x, 0, x)).to_expr()
    q = (sin(x)**2 / x).integrate((x, 0, x))
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1 + x**2)).to_expr()
    q = C_2 * log(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(log(1 + x**2)).diff().to_expr()
    q = C_0 * x / (x**2 + 1)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).to_expr()
    q = 3 * C_3 * x - 3 * sqrt(pi) * C_3 * erf(x) / 2 + x + 2 * x / sqrt(pi)
    assert p == q
    p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
    assert p == sqrt(x)
    assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
    p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
    assert p == sqrt(1 + x**2)
    p = expr_to_holonomic((2 * x**2 + 1)**(S(2) / 3)).to_expr()
    assert p == (2 * x**2 + 1)**(S(2) / 3)
    p = expr_to_holonomic(sqrt(-x**2 + 2 * x)).to_expr()
    assert p == sqrt(x) * sqrt(-x + 2)
    p = expr_to_holonomic((-2 * x**3 + 7 * x)**(S(2) / 3)).to_expr()
    q = x**(S(2) / 3) * (-2 * x**2 + 7)**(S(2) / 3)
    assert p == q
    p = from_hyper(hyper((-2, -3), (S(1) / 2, ), x))
    s = hyperexpand(hyper((-2, -3), (S(1) / 2, ), x))
    D_0 = Symbol('D_0')
    C_0 = Symbol('C_0')
    assert (p.to_expr().subs({C_0: 1, D_0: 0}) - s).simplify() == 0
    p.singular_ics = [(0, [1]), (S(1) / 2, [0])]
    assert p.to_expr() == s