Esempio n. 1
0
def test_fourier_transform():
    from sympy import simplify, expand, expand_complex, factor, expand_trig
    FT = fourier_transform
    IFT = inverse_fourier_transform

    def simp(x):
        return simplify(expand_trig(expand_complex(expand(x))))

    def sinc(x):
        return sin(pi*x)/(pi*x)
    k = symbols('k', real=True)
    f = Function("f")

    # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
    a = symbols('a', positive=True)
    b = symbols('b', positive=True)

    posk = symbols('posk', positive=True)

    # Test unevaluated form
    assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
    assert inverse_fourier_transform(
        f(k), k, x) == InverseFourierTransform(f(k), k, x)

    # basic examples from wikipedia
    assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
    # TODO IFT is a *mess*
    assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
    # TODO IFT

    assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)
    # NOTE: the ift comes out in pieces
    assert IFT(1/(a + 2*pi*I*x), x, posk,
            noconds=False) == (exp(-a*posk), True)
    assert IFT(1/(a + 2*pi*I*x), x, -posk,
            noconds=False) == (0, True)
    assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
            noconds=False) == (0, True)
    # TODO IFT without factoring comes out as meijer g

    assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)**2
    assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
        b/(b**2 + (a + 2*I*pi*k)**2)

    assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
    assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
    assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
Esempio n. 2
0
def test_as_integral():
    from sympy import Function, Integral
    f = Function('f')
    assert mellin_transform(f(x), x, s).rewrite('Integral') == \
        Integral(x**(s - 1)*f(x), (x, 0, oo))
    assert fourier_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
    assert laplace_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-s*x), (x, 0, oo))
    assert str(inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
        == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))"
    assert str(inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
        "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
    assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
        Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
Esempio n. 3
0
def test_as_integral():
    from sympy import Function, Integral
    f = Function('f')
    assert mellin_transform(f(x), x, s).rewrite('Integral') == \
        Integral(x**(s - 1)*f(x), (x, 0, oo))
    assert fourier_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
    assert laplace_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-s*x), (x, 0, oo))
    assert str(inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
        == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))"
    assert str(inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
        "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
    assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
        Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
Esempio n. 4
0
def test_messy():
    from sympy.functions.elementary.complexes import re
    from sympy.functions.elementary.hyperbolic import (acosh, acoth)
    from sympy.functions.elementary.piecewise import Piecewise
    from sympy.functions.elementary.trigonometric import (asin, atan)
    from sympy.functions.special.bessel import besselj
    from sympy.functions.special.error_functions import (Chi, E1, Shi, Si)
    from sympy.integrals.transforms import (fourier_transform,
                                            laplace_transform)
    assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi / 2) / s, 0, True)

    assert laplace_transform(Shi(x), x, s) == (acoth(s) / s, -oo, s**2 > 1)

    # where should the logs be simplified?
    assert laplace_transform(Chi(x), x,
                             s) == ((log(s**(-2)) - log(1 - 1 / s**2)) /
                                    (2 * s), -oo, s**2 > 1)

    # TODO maybe simplify the inequalities? when the simplification
    # allows for generators instead of symbols this will work
    assert laplace_transform(besselj(a, x), x, s)[1:] == \
        (0, (re(a) > -2) & (re(a) > -1))

    # NOTE s < 0 can be done, but argument reduction is not good enough yet
    ans = fourier_transform(besselj(1, x) / x, x, s, noconds=False)
    assert tuple([ans[0].factor(deep=True).expand(), ans[1]]) == \
        (Piecewise((0, (s > 1/(2*pi)) | (s < -1/(2*pi))),
                   (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0)
    # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons)
    #                       - folding could be better

    assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \
        log(1 + sqrt(2))
    assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \
        log(S.Half + sqrt(2)/2)

    assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \
        Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True))
Esempio n. 5
0
def test_issue_12591():
    x, y = symbols("x y", real=True)
    assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)
Esempio n. 6
0
def test_fourier_transform():
    from sympy import simplify, expand, expand_complex, factor, expand_trig

    FT = fourier_transform
    IFT = inverse_fourier_transform

    def simp(x):
        return simplify(expand_trig(expand_complex(expand(x))))

    def sinc(x):
        return sin(pi * x) / (pi * x)

    k = symbols("k", real=True)
    f = Function("f")

    # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
    a = symbols("a", positive=True)
    b = symbols("b", positive=True)

    posk = symbols("posk", positive=True)

    # Test unevaluated form
    assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
    assert inverse_fourier_transform(f(k), k, x) == InverseFourierTransform(f(k), k, x)

    # basic examples from wikipedia
    assert simp(FT(Heaviside(1 - abs(2 * a * x)), x, k)) == sinc(k / a) / a
    # TODO IFT is a *mess*
    assert (
        simp(FT(Heaviside(1 - abs(a * x)) * (1 - abs(a * x)), x, k))
        == sinc(k / a) ** 2 / a
    )
    # TODO IFT

    assert factor(FT(exp(-a * x) * Heaviside(x), x, k), extension=I) == 1 / (
        a + 2 * pi * I * k
    )
    # NOTE: the ift comes out in pieces
    assert IFT(1 / (a + 2 * pi * I * x), x, posk, noconds=False) == (
        exp(-a * posk),
        True,
    )
    assert IFT(1 / (a + 2 * pi * I * x), x, -posk, noconds=False) == (0, True)
    assert IFT(
        1 / (a + 2 * pi * I * x), x, symbols("k", negative=True), noconds=False
    ) == (0, True)
    # TODO IFT without factoring comes out as meijer g

    assert (
        factor(FT(x * exp(-a * x) * Heaviside(x), x, k), extension=I)
        == 1 / (a + 2 * pi * I * k) ** 2
    )
    assert FT(exp(-a * x) * sin(b * x) * Heaviside(x), x, k) == b / (
        b ** 2 + (a + 2 * I * pi * k) ** 2
    )

    assert FT(exp(-a * x ** 2), x, k) == sqrt(pi) * exp(-(pi ** 2) * k ** 2 / a) / sqrt(
        a
    )
    assert IFT(sqrt(pi / a) * exp(-((pi * k) ** 2) / a), k, x) == exp(-a * x ** 2)
    assert FT(exp(-a * abs(x)), x, k) == 2 * a / (a ** 2 + 4 * pi ** 2 * k ** 2)
Esempio n. 7
0
def test_issue_12591():
    x, y = symbols("x y", real=True)
    assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)