Esempio n. 1
0
def test_matrix_expression_to_indices():
    i, j = symbols("i, j")
    i1, i2, i3 = symbols("i_1:4")

    def replace_dummies(expr):
        repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
        return expr.xreplace(repl)

    expr = W*X*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = Z.T*X.T*W.T
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr

    expr = W*X*Z + W*Y*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = W*(X + Y)*Z
    assert replace_dummies(expr._entry(i, j)) == \
            Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = A*B**2*A
Esempio n. 2
0
def test_matrix_expression_to_indices():
    i, j = symbols("i, j")
    i1, i2, i3 = symbols("i_1:4")

    def replace_dummies(expr):
        repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
        return expr.xreplace(repl)

    expr = W * X * Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = Z.T * X.T * W.T
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr

    expr = W * X * Z + W * Y * Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = W * (X + Y) * Z
    assert replace_dummies(expr._entry(i, j)) == \
            Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = A * B**2 * A
Esempio n. 3
0
def test_matrix_expression_to_indices():
    i, j = symbols("i, j")
    i1, i2, i3 = symbols("i_1:4")

    def replace_dummies(expr):
        repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
        return expr.xreplace(repl)

    expr = W * X * Z
    assert replace_dummies(expr._entry(i, j)) == Sum(
        W[i, i1] * X[i1, i2] * Z[i2, j], (i1, 0, l - 1), (i2, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = Z.T * X.T * W.T
    assert replace_dummies(expr._entry(i, j)) == Sum(
        W[j, i2] * X[i2, i1] * Z[i1, i], (i1, 0, m - 1), (i2, 0, l - 1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr

    expr = W * X * Z + W * Y * Z
    assert replace_dummies(expr._entry(
        i, j)) == Sum(W[i, i1] * X[i1, i2] * Z[i2, j], (i1, 0, l - 1),
                      (i2, 0, m - 1)) + Sum(W[i, i1] * Y[i1, i2] * Z[i2, j],
                                            (i1, 0, l - 1), (i2, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = 2 * W * X * Z + 3 * W * Y * Z
    assert replace_dummies(expr._entry(i, j)) == 2 * Sum(
        W[i, i1] * X[i1, i2] * Z[i2, j], (i1, 0, l - 1),
        (i2, 0, m - 1)) + 3 * Sum(W[i, i1] * Y[i1, i2] * Z[i2, j],
                                  (i1, 0, l - 1), (i2, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = W * (X + Y) * Z
    assert replace_dummies(expr._entry(i, j)) == Sum(
        W[i, i1] * (X[i1, i2] + Y[i1, i2]) * Z[i2, j], (i1, 0, l - 1),
        (i2, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = A * B**2 * A
    # assert replace_dummies(expr._entry(i, j)) == \
    #        Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))

    # Check that different dummies are used in sub-multiplications:
    expr = (X1 * X2 + X2 * X1) * X3
    assert replace_dummies(expr._entry(i, j)) == Sum(
        (Sum(X1[i, i2] * X2[i2, i1],
             (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3],
                                   (i3, 0, m - 1))) * X3[i1, j],
        (i1, 0, m - 1),
    )
Esempio n. 4
0
 def __add__(self, other):
     if isinstance(other, BlockMatrix):
         if len(self.args) == len(other.args):
             if all(x.shape == y.shape
                    for x, y in zip(self.args, other.args)):
                 return self.func(
                     *[x + y for x, y in zip(self.args, other.args)])
     return MatrixExpr.__add__(self, other)
Esempio n. 5
0
    def __new__(cls, arg, **kwargs):
        arg = _sympify(arg)

        if kwargs.get('evaluate', True):
            transpose = arg._eval_transpose()
            if transpose is not None:
                return transpose

        return MatrixExpr.__new__(cls, arg, **kwargs)
Esempio n. 6
0
def test_matrix_expression_to_indices():
    i, j = symbols("i, j")
    i1, i2, i3 = symbols("i_1:4")

    def replace_dummies(expr):
        repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
        return expr.xreplace(repl)

    expr = W*X*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = Z.T*X.T*W.T
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr

    expr = W*X*Z + W*Y*Z
    assert replace_dummies(expr._entry(i, j)) == \
        Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = 2*W*X*Z + 3*W*Y*Z
    assert replace_dummies(expr._entry(i, j)) == \
        2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
        3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = W*(X + Y)*Z
    assert replace_dummies(expr._entry(i, j)) == \
            Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
    assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr

    expr = A*B**2*A
    #assert replace_dummies(expr._entry(i, j)) == \
    #        Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))

    # Check that different dummies are used in sub-multiplications:
    expr = (X1*X2 + X2*X1)*X3
    assert replace_dummies(expr._entry(i, j)) == \
           Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
               i1, j], (i1, 0, m - 1))
Esempio n. 7
0
 def _subs(self, old, new, **hints):
     if old.is_MatMul:
         args = old.args
         for i in range(len(self.args) - len(args) + 1):
             if all(self.args[j] == args[j - i]
                    for j in range(i, i + len(args))):
                 return self.func(*self.args[:i] +
                                  (new.args if new.is_MatMul else (new, )) +
                                  self.args[i + len(args):]).simplify()
     return MatrixExpr._subs(self, old, new, **hints)
Esempio n. 8
0
    def simplify(self, deep=False, **kwargs):
        if deep:
            return MatrixExpr.simplify(self, deep=deep, **kwargs)
        if self.axis == 0:
            if self.shape[0] == len(self.args):
                from sympy import Indexed
                start = None
                for i, arg in enumerate(self.args):
                    if not isinstance(arg, Indexed):
                        return self
                    diff = arg.indices[-1] - i
                    if start is None:
                        start = diff
                    else:
                        if start != diff:
                            return self

                return arg.base[start:len(self.args)]

            b = None

            start, stop = None, None
            for arg in self.args:
                if arg.is_Slice or arg.is_Indexed:
                    if b is None:
                        b = arg.base
                    elif b != arg.base or len(arg.indices) > 1:
                        b = None
                        break

                    if start is None:
                        if arg.is_Slice:
                            start, stop = arg.index
                        else:
                            start = arg.index
                            stop = start + 1
                    else:
                        if arg.is_Slice:
                            _start, _stop = arg.index
                        else:
                            _start = arg.index
                            _stop = _start + 1

                        if _start != stop:
                            b = None
                            break
                        stop = _stop
            if b is not None:
                return b[start:stop]
        return self
Esempio n. 9
0
def test_matrix_expression_from_index_summation():
    from sympy.abc import a, b, c, d

    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    w1 = MatrixSymbol("w1", k, 1)

    i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)

    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr, a) == W * X * Z
    expr = Sum(W.T[b, a] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr, a) == W * X * Z
    expr = Sum(A[b, a] * B[b, c] * C[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B * C
    expr = Sum(A[b, a] * B[c, b] * C[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B.T * C
    expr = Sum(C[c, d] * A[b, a] * B[c, b], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B.T * C
    expr = Sum(A[a, b] + B[a, b], (a, 0, k - 1), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A + B
    expr = Sum((A[a, b] + B[a, b]) * C[b, c], (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == (A + B) * C
    expr = Sum((A[a, b] + B[b, a]) * C[b, c], (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == (A + B.T) * C
    expr = Sum(A[a, b] * A[b, c] * A[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A**3
    expr = Sum(A[a, b] * A[b, c] * B[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A**2 * B

    # Parse the trace of a matrix:

    expr = Sum(A[a, a], (a, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, None) == trace(A)
    expr = Sum(A[a, a] * B[b, c] * C[c, d], (a, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, b) == trace(A) * B * C

    # Check wrong sum ranges (should raise an exception):

    ## Case 1: 0 to m instead of 0 to m-1
    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
    ## Case 2: 1 to m-1 instead of 0 to m-1
    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 1, m - 1))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))

    # Parse nested sums:
    expr = Sum(A[a, b] * Sum(B[b, c] * C[c, d], (c, 0, k - 1)), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A * B * C

    # Test Kronecker delta:
    expr = Sum(A[a, b] * KroneckerDelta(b, c) * B[c, d], (b, 0, k - 1),
               (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A * B

    expr = Sum(
        KroneckerDelta(i1, m) * KroneckerDelta(i2, n) * A[i, i1] * A[j, i2],
        (i1, 0, k - 1),
        (i2, 0, k - 1),
    )
    assert MatrixExpr.from_index_summation(expr, m) == A.T * A[j, n]

    # Test numbered indices:
    expr = Sum(A[i1, i2] * w1[i2, 0], (i2, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, i1) == A * w1

    expr = Sum(A[i1, i2] * B[i2, 0], (i2, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr,
                                           i1) == MatrixElement(A * B, i1, 0)
Esempio n. 10
0
def test_matrix_expression_from_index_summation():
    from sympy.abc import a, b, c, d
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)

    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr, a) == W * X * Z
    expr = Sum(W.T[b, a] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m - 1))
    assert MatrixExpr.from_index_summation(expr, a) == W * X * Z
    expr = Sum(A[b, a] * B[b, c] * C[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B * C
    expr = Sum(A[b, a] * B[c, b] * C[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B.T * C
    expr = Sum(C[c, d] * A[b, a] * B[c, b], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T * B.T * C
    expr = Sum(A[a, b] + B[a, b], (a, 0, k - 1), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A + B
    expr = Sum((A[a, b] + B[a, b]) * C[b, c], (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == (A + B) * C
    expr = Sum((A[a, b] + B[b, a]) * C[b, c], (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == (A + B.T) * C
    expr = Sum(A[a, b] * A[b, c] * A[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, A)
    expr = Sum(A[a, b] * A[b, c] * B[c, d], (b, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, B)

    # Parse the trace of a matrix:

    expr = Sum(A[a, a], (a, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, None) == trace(A)
    expr = Sum(A[a, a] * B[b, c] * C[c, d], (a, 0, k - 1), (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, b) == trace(A) * B * C

    # Check wrong sum ranges (should raise an exception):

    ## Case 1: 0 to m instead of 0 to m-1
    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 0, m))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
    ## Case 2: 1 to m-1 instead of 0 to m-1
    expr = Sum(W[a, b] * X[b, c] * Z[c, d], (b, 0, l - 1), (c, 1, m - 1))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))

    # Parse nested sums:
    expr = Sum(A[a, b] * Sum(B[b, c] * C[c, d], (c, 0, k - 1)), (b, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A * B * C

    # Test Kronecker delta:
    expr = Sum(A[a, b] * KroneckerDelta(b, c) * B[c, d], (b, 0, k - 1),
               (c, 0, k - 1))
    assert MatrixExpr.from_index_summation(expr, a) == A * B
Esempio n. 11
0
def test_matrix_expression_from_index_summation():
    from sympy.abc import a,b,c,d
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)
    w1 = MatrixSymbol("w1", k, 1)

    i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)

    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
    expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A + B
    expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
    expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
    expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, A)
    expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, B)

    # Parse the trace of a matrix:

    expr = Sum(A[a, a], (a, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, None) == trace(A)
    expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C

    # Check wrong sum ranges (should raise an exception):

    ## Case 1: 0 to m instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
    ## Case 2: 1 to m-1 instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))

    # Parse nested sums:
    expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B*C

    # Test Kronecker delta:
    expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B

    expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, m) == A.T*A[j, n]

    # Test numbered indices:
    expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, i1) == A*w1

    expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)
Esempio n. 12
0
 def domain_defined(self, x):
     domain = MatrixExpr.domain_defined(self, x)
     for arg in self.args:
         domain &= arg.domain_defined(x)
     return domain
Esempio n. 13
0
 def domain_definition(self):
     eq = MatrixExpr.domain_definition(self)
     for arg in self.args:
         eq &= arg.domain_definition()
     return eq
Esempio n. 14
0
    def expand(self, free_symbol=None, deep=True, **_):
        if not deep:
            return MatrixExpr.expand(self)
        from sympy.concrete.expr_with_limits import LAMBDA
        from sympy.concrete.summations import Sum
        if len(self.args) > 2:
            return MatrixExpr.expand(self)

        A, B = self.args
        if A.is_MatPow:
            return self
        if A.is_Concatenate:
            if B.is_Concatenate and len(A.shape) == 1:
                if len(A.args) == len(B.args):
                    sgm = None
                    for a, b in zip(A.args, B.args):
                        if a.shape:
                            product = a @ b
                            if product.is_MatMul and len(product.args) == 2:
                                product = product.expand()
                        else:
                            product = a * b
                        if sgm is None:
                            sgm = product
                        else:
                            sgm += product
                    return sgm
                else:
                    return self
            else:
                args = [self.func(arg, B).simplify() for arg in A.args]
                if deep:
                    args = [
                        arg.expand(deep=True) if arg.is_MatMul else arg
                        for arg in args
                    ]
                return A.func(*args)

        if A.is_Transpose:
            if B.is_Transpose:
                return (B.arg @ A.arg).expand().T
            if A.arg.is_Concatenate and B.is_Concatenate:
                A_T = A.arg
                if len(A_T.args) == len(B.args):
                    B_T = B._eval_transpose()
                    if B_T is not None:
                        # A @ B = A.T.T @ B.T.T = (B.T @ A.T).T
                        return (B_T @ A_T).expand().T

                    sgm = None
                    for a, b in zip(A_T.args, B.args):
                        if len(a.shape) == 1 and len(b.shape) == 1:
                            n = a.shape[0]
                            if b.shape[0] == n:
                                i = a.generate_free_symbol(b.free_symbols,
                                                           integer=True)
                                j = a.generate_free_symbol(b.free_symbols
                                                           | {i},
                                                           integer=True)
                                product = LAMBDA[j:n,
                                                 i:n](a[i] * b[j]).simplify()
                            else:
                                return self
                        else:
                            if not b.shape:
                                product = a * b
                            elif a.rows == b.shape[0]:
                                product = (a.T @ b).simplify()
                                if product.is_MatMul and len(
                                        product.args) == 2:
                                    X = product.args[1]
                                    if X.is_Transpose and X.arg.is_Concatenate:
                                        product = product.expand()
                            else:
                                return self
                        if sgm is None:
                            sgm = product
                        else:
                            sgm += product
                    return sgm
            return self

        if B.is_Concatenate:
            return self

        if B.is_Transpose and B.arg.is_Concatenate:
            return (B.arg @ A.T).expand().T

        if A.is_MatProduct:
            return self

        kwargs = {'free_symbol': free_symbol, 'generator': self}

        def generate_k_limit(A, B, excludes=None, **kwargs):
            if A.is_LAMBDA or not B.is_LAMBDA:
                if excludes:
                    excludes |= B.free_symbols
                else:
                    excludes = B.free_symbols

                return A.generate_int_limit(0, excludes, **kwargs)

            if excludes:
                excludes |= A.free_symbols
            else:
                excludes = A.free_symbols

            return B.generate_int_limit(0 if len(B.shape) == 1 else 1,
                                        excludes, **kwargs)

        if len(A.shape) > 1:
            i_limit = A.generate_int_limit(1, **kwargs)
            i, *_ = i_limit
            if len(B.shape) > 1:
                j_limit = B.generate_int_limit(0, {i}, **kwargs)
                j, *_ = j_limit

                k_limit = generate_k_limit(A, B, {i, j}, **kwargs)
                k, *_ = k_limit

                assert i != k and k != j and i != j
                return LAMBDA(
                    Sum(A[i, k] * B[k, j], k_limit).simplify(), j_limit,
                    i_limit).simplify()
            else:
                k_limit = generate_k_limit(A, B, {i}, **kwargs)
                k, *_ = k_limit

                assert i != k
                return LAMBDA(
                    Sum(A[i, k] * B[k], k_limit).simplify(),
                    i_limit).simplify()
        else:
            #             print('A.shape =', A.shape)
            if len(B.shape) > 1:
                if B.shape[-1].is_Integer:
                    k_limit = generate_k_limit(A, B, **kwargs)
                    k, *_ = k_limit

                    args = []
                    for j in range(B.shape[-1]):
                        args.append(Sum(A[k] * B[k, j], k_limit).simplify())
                    return Concatenate(*args)
                else:
                    #                     print('B.shape =', B.shape)
                    j_limit = B.generate_int_limit(0, **kwargs)
                    j, *_ = j_limit

                    k_limit = generate_k_limit(A, B, {j}, **kwargs)
                    k, *_ = k_limit

                    assert k != j
                    return LAMBDA(
                        Sum(A[k] * B[k, j], k_limit).simplify(),
                        j_limit).simplify()
            k_limit = generate_k_limit(A, B, **kwargs)
            k, *_ = k_limit
            return Sum(A[k] * B[k], k_limit).simplify()
Esempio n. 15
0
    def expand(self, var=None, deep=True, **_):
        if not deep:
            return MatrixExpr.expand(self)

        from sympy.concrete.expr_with_limits import Lamda
        from sympy.concrete.summations import Sum
        if len(self.args) > 2:
            matmul = self.func(*self.args[:-1]).expand(
                var=var, deep=deep) @ self.args[-1]
            if matmul.is_MatMul:
                matmul = matmul.expand(var=var, deep=deep)
            return matmul

        A, B = self.args
        if A.is_MatPow:
            return self
        if A.is_BlockMatrix:
            if B.is_BlockMatrix and len(A.shape) == 1:
                if len(A.args) == len(B.args):
                    sgm = None
                    for a, b in zip(A.args, B.args):
                        if a.shape:
                            product = a @ b
                            if product.is_MatMul and len(product.args) == 2:
                                product = product.expand()
                        else:
                            product = a * b
                        if sgm is None:
                            sgm = product
                        else:
                            sgm += product
                    return sgm
                else:
                    return self
            else:
                args = [self.func(arg, B).simplify() for arg in A.args]
                if deep:
                    args = [
                        arg.expand(deep=True) if arg.is_MatMul else arg
                        for arg in args
                    ]
                return A.func(*args)

        if A.is_Transpose:
            if B.is_Transpose:
                return (B.arg @ A.arg).expand().T
            if A.arg.is_BlockMatrix and B.is_BlockMatrix:
                A_T = A.arg
                if len(A_T.args) == len(B.args):
                    B_T = B._eval_transpose()
                    if B_T is not None:
                        # A @ B = A.T.T @ B.T.T = (B.T @ A.T).T
                        return (B_T @ A_T).expand().T

                    sgm = None
                    for a, b in zip(A_T.args, B.args):
                        if len(a.shape) == 1 and len(b.shape) == 1:
                            n = a.shape[0]
                            if b.shape[0] == n:
                                i = a.generate_var(b.free_symbols,
                                                   integer=True)
                                j = a.generate_var(b.free_symbols | {i},
                                                   integer=True)
                                product = Lamda[j:n,
                                                i:n](a[i] * b[j]).simplify()
                            else:
                                return self
                        else:
                            if not b.shape:
                                product = a * b
                            elif a.rows == b.shape[0]:
                                product = (a.T @ b).simplify()
                                if product.is_MatMul and len(
                                        product.args) == 2:
                                    X = product.args[1]
                                    if X.is_Transpose and X.arg.is_BlockMatrix:
                                        product = product.expand()
                            else:
                                return self
                        if sgm is None:
                            sgm = product
                        else:
                            sgm += product
                    return sgm
            return self

        if B.is_BlockMatrix:
            return self

        if B.is_Transpose and B.arg.is_BlockMatrix:
            return (B.arg @ A.T).expand().T

        if A.is_MatProduct:
            return self

        kwargs = {'var': var, 'generator': self}

        def generate_k_limit(A, B, excludes=None, **kwargs):
            if A.is_Lamda or not B.is_Lamda:
                if excludes:
                    excludes |= B.free_symbols
                else:
                    excludes = B.free_symbols

                return A.generate_int_limit(0, excludes, **kwargs)

            if excludes:
                excludes |= A.free_symbols
            else:
                excludes = A.free_symbols

            return B.generate_int_limit(0 if len(B.shape) == 1 else 1,
                                        excludes, **kwargs)

        if len(A.shape) == 1 and len(B.shape) > 1 and B.shape[-1].is_Integer:
            k_limit = generate_k_limit(A, B, **kwargs)
            k, *_ = k_limit

            args = []
            if A.shape[0].is_Integer:
                for j in range(B.shape[-1]):
                    args.append(Sum(A[k] * B[k, j], k_limit).doit())
                from sympy import Matrix
                return Matrix(tuple(args))
            else:
                for j in range(B.shape[-1]):
                    args.append(Sum(A[k] * B[k, j], k_limit).simplify())
                return BlockMatrix(*args)

        return self
Esempio n. 16
0
def test_matrix_expression_from_index_summation():
    from sympy.abc import a,b,c,d
    A = MatrixSymbol("A", k, k)
    B = MatrixSymbol("B", k, k)
    C = MatrixSymbol("C", k, k)

    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
    assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
    expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
    expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
    assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
    expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A + B
    expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
    expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
    expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, A)
    expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == MatMul(A, A, B)

    # Parse the trace of a matrix:

    expr = Sum(A[a, a], (a, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, None) == trace(A)
    expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C

    # Check wrong sum ranges (should raise an exception):

    ## Case 1: 0 to m instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
    ## Case 2: 1 to m-1 instead of 0 to m-1
    expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
    raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))

    # Parse nested sums:
    expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B*C

    # Test Kronecker delta:
    expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
    assert MatrixExpr.from_index_summation(expr, a) == A*B
Esempio n. 17
0
 def __rmul__(self, other):
     if not other.shape:
         return self.func(*(other * arg for arg in self.args))
     return MatrixExpr.__rmul__(self, other)
Esempio n. 18
0
 def _eval_domain_defined(self, x, **_):
     domain = MatrixExpr._eval_domain_defined(self, x)
     for arg in self.args:
         domain &= arg.domain_defined(x)
     return domain