def test_cse_MatrixExpr(): from sympy import MatrixSymbol A = MatrixSymbol('A', 3, 3) y = MatrixSymbol('y', 3, 1) expr1 = 2 * (A.T * A).I * A * y expr2 = (A.T * A) * A * y replacements, reduced_exprs = cse([expr1, expr2]) assert len(replacements) > 0 replacements, reduced_exprs = cse([expr1 + expr2, expr1]) assert replacements replacements, reduced_exprs = cse([A**2, A + A**2]) assert replacements
def test_matrix_element_sets_slices_blocks(): from sympy.matrices.expressions import BlockMatrix X = MatrixSymbol("X", 4, 4) assert ask(Q.integer_elements(X[:, 3]), Q.integer_elements(X)) assert ask(Q.integer_elements(BlockMatrix([[X], [X]])), Q.integer_elements(X))
def test_transpose(): Sq = MatrixSymbol('Sq', n, n) assert transpose(A) == Transpose(A) assert Transpose(A).shape == (m, n) assert Transpose(A * B).shape == (l, n) assert transpose(Transpose(A)) == A assert isinstance(Transpose(Transpose(A)), Transpose) assert adjoint(Transpose(A)) == Adjoint(Transpose(A)) assert conjugate(Transpose(A)) == Adjoint(A) assert Transpose(eye(3)).doit() == eye(3) assert Transpose(S(5)).doit() == S(5) assert Transpose(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]]) assert transpose(trace(Sq)) == trace(Sq) assert trace(Transpose(Sq)) == trace(Sq) assert Transpose(Sq)[0, 1] == Sq[1, 0] assert Transpose(A * B).doit() == Transpose(B) * Transpose(A)
def test_field_assumptions(): X = MatrixSymbol('X', 4, 4) Y = MatrixSymbol('Y', 4, 4) assert ask(Q.real_elements(X), Q.real_elements(X)) assert not ask(Q.integer_elements(X), Q.real_elements(X)) assert ask(Q.complex_elements(X), Q.real_elements(X)) assert ask(Q.real_elements(X + Y), Q.real_elements(X)) is None assert ask(Q.real_elements(X + Y), Q.real_elements(X) & Q.real_elements(Y)) assert ask(Q.complex_elements(X + Y), Q.real_elements(X) & Q.complex_elements(Y)) assert ask(Q.real_elements(X.T), Q.real_elements(X)) assert ask(Q.real_elements(X.I), Q.real_elements(X) & Q.invertible(X)) assert ask(Q.real_elements(Trace(X)), Q.real_elements(X)) assert ask(Q.integer_elements(Determinant(X)), Q.integer_elements(X)) assert not ask(Q.integer_elements(X.I), Q.integer_elements(X))
def test_Trace_MatAdd_doit(): # See issue #9028 X = ImmutableMatrix([[1, 2, 3]] * 3) Y = MatrixSymbol('Y', 3, 3) q = MatAdd(X, 2 * X, Y, -3 * Y) assert Trace(q).arg == q assert Trace(q).doit() == 18 - 2 * Trace(Y)
def test_DiagonalMatrix(): x = MatrixSymbol('x', n, m) D = DiagonalMatrix(x) assert D.diagonal_length is None assert D.shape == (n, m) x = MatrixSymbol('x', n, n) D = DiagonalMatrix(x) assert D.diagonal_length == n assert D.shape == (n, n) assert D[1, 2] == 0 assert D[1, 1] == x[1, 1] i = Symbol('i') j = Symbol('j') x = MatrixSymbol('x', 3, 3) ij = DiagonalMatrix(x)[i, j] assert ij != 0 assert ij.subs({i:0, j:0}) == x[0, 0] assert ij.subs({i:0, j:1}) == 0 assert ij.subs({i:1, j:1}) == x[1, 1] assert ask(Q.diagonal(D)) # affirm that D is diagonal x = MatrixSymbol('x', n, 3) D = DiagonalMatrix(x) assert D.diagonal_length == 3 assert D.shape == (n, 3) assert D[2, m] == KroneckerDelta(2, m)*x[2, m] assert D[3, m] == 0 raises(IndexError, lambda: D[m, 3]) x = MatrixSymbol('x', 3, n) D = DiagonalMatrix(x) assert D.diagonal_length == 3 assert D.shape == (3, n) assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2] assert D[m, 3] == 0 raises(IndexError, lambda: D[3, m]) x = MatrixSymbol('x', n, m) D = DiagonalMatrix(x) assert D.diagonal_length is None assert D.shape == (n, m) assert D[m, 4] != 0 x = MatrixSymbol('x', 3, 4) assert [DiagonalMatrix(x)[i] for i in range(12)] == [ x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0] # shape is retained, issue 12427 assert ( DiagonalMatrix(MatrixSymbol('x', 3, 4))* DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
def test_BlockMatrix_Determinant(): A, B, C, D = map(lambda s: MatrixSymbol(s, 3, 3), 'ABCD') X = BlockMatrix([[A, B], [C, D]]) from sympy import assuming, Q with assuming(Q.invertible(A)): assert det(X) == det(A) * det(D - C * A.I * B) assert isinstance(det(X), Expr)
def test_DiagonalizeVector(): x = MatrixSymbol('x', n, 1) d = DiagonalizeVector(x) assert d.shape == (n, n) assert d[0, 1] == 0 assert d[0, 0] == x[0, 0] a = MatrixSymbol('a', 1, 1) d = diagonalize_vector(a) assert isinstance(d, MatrixSymbol) assert a == d assert diagonalize_vector(Identity(3)) == Identity(3) assert isinstance(DiagonalizeVector(Identity(3)), DiagonalizeVector) # A diagonal matrix is equal to its transpose: assert DiagonalizeVector(x).T == DiagonalizeVector(x) assert diagonalize_vector(x.T) == DiagonalizeVector(x) dx = DiagonalizeVector(x) assert dx[0, 0] == x[0, 0] assert dx[1, 1] == x[1, 0] assert dx[0, 1] == 0 assert dx[0, m] == x[0, 0] * KroneckerDelta(0, m) z = MatrixSymbol('z', 1, n) dz = DiagonalizeVector(z) assert dz[0, 0] == z[0, 0] assert dz[1, 1] == z[0, 1] assert dz[0, 1] == 0 assert dz[0, m] == z[0, m] * KroneckerDelta(0, m) v = MatrixSymbol('v', 3, 1) dv = DiagonalizeVector(v) assert dv.as_explicit() == Matrix([ [v[0, 0], 0, 0], [0, v[1, 0], 0], [0, 0, v[2, 0]], ]) v = MatrixSymbol('v', 1, 3) dv = DiagonalizeVector(v) assert dv.as_explicit() == Matrix([ [v[0, 0], 0, 0], [0, v[0, 1], 0], [0, 0, v[0, 2]], ])
def test_block_lu_decomposition(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) #LDU decomposition L, D, U = X.LDUdecomposition() assert block_collapse(L*D*U) == X #UDL decomposition U, D, L = X.UDLdecomposition() assert block_collapse(U*D*L) == X #LU decomposition L, U = X.LUdecomposition() assert block_collapse(L*U) == X
def test_matrix_element_sets(): X = MatrixSymbol('X', 4, 4) assert ask(Q.real(X[1, 2]), Q.real_elements(X)) assert ask(Q.integer(X[1, 2]), Q.integer_elements(X)) assert ask(Q.complex(X[1, 2]), Q.complex_elements(X)) assert ask(Q.integer_elements(Identity(3))) assert ask(Q.integer_elements(ZeroMatrix(3, 3))) from sympy.matrices.expressions.fourier import DFT assert ask(Q.complex_elements(DFT(3)))
def test_print_tree_MatAdd_noassumptions(): from sympy.matrices.expressions import MatrixSymbol A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) test_str = \ """MatAdd: A + B +-MatrixSymbol: A | +-Str: A | +-Integer: 3 | +-Integer: 3 +-MatrixSymbol: B +-Str: B +-Integer: 3 +-Integer: 3 """ assert tree(A + B, assumptions=False) == test_str
def _rebuild(expr): if not isinstance(expr, Basic): return expr if not expr.args: return expr if iterable(expr): new_args = [_rebuild(arg) for arg in expr] return expr.func(*new_args) if expr in subs: return subs[expr] orig_expr = expr if expr in opt_subs: expr = opt_subs[expr] # If enabled, parse Muls and Adds arguments by order to ensure # replacement order independent from hashes if order != 'none': if isinstance(expr, (Mul, MatMul)): c, nc = expr.args_cnc() if c == [1]: args = nc else: args = list(ordered(c)) + nc elif isinstance(expr, (Add, MatAdd)): args = list(ordered(expr.args)) else: args = expr.args else: args = expr.args new_args = list(map(_rebuild, args)) if new_args != args: new_expr = expr.func(*new_args) else: new_expr = expr if orig_expr in to_eliminate: try: sym = next(symbols) except StopIteration: raise ValueError("Symbols iterator ran out of symbols.") if isinstance(orig_expr, MatrixExpr): sym = MatrixSymbol(sym.name, orig_expr.rows, orig_expr.cols) subs[orig_expr] = sym replacements.append((sym, new_expr)) return sym else: return new_expr
def test_BlockMatrix_3x3_symbolic(): # Only test one of these, instead of all permutations, because it's slow rowblocksizes = (n, m, k) colblocksizes = (m, k, n) K = BlockMatrix([ [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes] for rows in rowblocksizes ]) collapse = block_collapse(K.I) assert isinstance(collapse, BlockMatrix)
def test_BlockMatrix_Determinant(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) from sympy import assuming, Q with assuming(Q.invertible(A)): assert det(X) == det(A) * det(D - C * A.I * B) assert isinstance(det(X), Expr) assert det(BlockMatrix([A])) == det(A) assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_field_assumptions(): X = MatrixSymbol('X', 4, 4) Y = MatrixSymbol('Y', 4, 4) assert ask(Q.real_elements(X), Q.real_elements(X)) assert not ask(Q.integer_elements(X), Q.real_elements(X)) assert ask(Q.complex_elements(X), Q.real_elements(X)) assert ask(Q.real_elements(X + Y), Q.real_elements(X)) is None assert ask(Q.real_elements(X + Y), Q.real_elements(X) & Q.real_elements(Y)) from sympy.matrices.expressions.hadamard import HadamardProduct assert ask(Q.real_elements(HadamardProduct(X, Y)), Q.real_elements(X) & Q.real_elements(Y)) assert ask(Q.complex_elements(X + Y), Q.real_elements(X) & Q.complex_elements(Y)) assert ask(Q.real_elements(X.T), Q.real_elements(X)) assert ask(Q.real_elements(X.I), Q.real_elements(X) & Q.invertible(X)) assert ask(Q.real_elements(Trace(X)), Q.real_elements(X)) assert ask(Q.integer_elements(Determinant(X)), Q.integer_elements(X)) assert not ask(Q.integer_elements(X.I), Q.integer_elements(X))
def test_HadamardProduct(): n, m, k = symbols('n,m,k') Z = MatrixSymbol('Z', n, n) A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, k) assert HadamardProduct(A, B, A).shape == A.shape raises(ShapeError, lambda: HadamardProduct(A, B.T)) raises(TypeError, lambda: HadamardProduct(A, n)) raises(TypeError, lambda: HadamardProduct(A, 1)) assert HadamardProduct(A, 2 * B, -A)[1, 1] == -2 * A[1, 1]**2 * B[1, 1] mix = HadamardProduct(Z * A, B) * C assert mix.shape == (n, k) assert HadamardProduct(A, B, A).T == HadamardProduct(A.T, B.T, A.T)
def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session(graph=graph) M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = convert_matrix_to_array(M * N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1, -2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all()
def test_reblock_2x2(): B = BlockMatrix([[MatrixSymbol('A_%d%d' % (i, j), 2, 2) for j in range(3)] for i in range(3)]) assert B.blocks.shape == (3, 3) BB = reblock_2x2(B) assert BB.blocks.shape == (2, 2) assert B.shape == BB.shape assert B.as_explicit() == BB.as_explicit()
def test_BlockMatrix_Determinant(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) from sympy.assumptions.ask import Q from sympy.assumptions.assume import assuming with assuming(Q.invertible(A)): assert det(X) == det(A) * det(X.schur('A')) assert isinstance(det(X), Expr) assert det(BlockMatrix([A])) == det(A) assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
def test_blockcut(): A = MatrixSymbol('A', n, m) B = blockcut(A, (n/2, n/2), (m/2, m/2)) assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]], [A[n/2:, :m/2], A[n/2:, m/2:]]]) M = ImmutableMatrix(4, 4, range(16)) B = blockcut(M, (2, 2), (2, 2)) assert M == ImmutableMatrix(B) B = blockcut(M, (1, 3), (2, 2)) assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
def test_DiagonalMatrix(): assert D.shape == (n, n) assert D[1, 2] == 0 assert D[1, 1] == X[1, 1] i = Symbol('i') j = Symbol('j') x = MatrixSymbol('x', 3, 3) ij = DiagonalMatrix(x)[i, j] assert ij != 0 assert ij.subs({i:0, j:0}) == x[0, 0] assert ij.subs({i:0, j:1}) == 0 assert ij.subs({i:1, j:1}) == x[1, 1]
def test_squareBlockMatrix(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) Y = BlockMatrix([[A]]) assert X.is_square assert (block_collapse(X + Identity(m + n)) == BlockMatrix( [[A + Identity(n), B], [C, D + Identity(m)]])) Q = X + Identity(m + n) assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul assert block_collapse(Y.I) == A.I assert block_collapse(X.inverse()) == BlockMatrix([[ (-B * D.I * C + A).I, -A.I * B * (D + -C * A.I * B).I ], [-(D - C * A.I * B).I * C * A.I, (D - C * A.I * B).I]]) assert isinstance(X.inverse(), Inverse) assert not X.is_Identity Z = BlockMatrix([[Identity(n), B], [C, D]]) assert not Z.is_Identity
def test_MatrixSlice(): X = MatrixSymbol('X', 4, 4) B = MatrixSlice(X, (1, 3), (1, 3)) C = MatrixSlice(X, (0, 3), (1, 3)) assert ask(Q.symmetric(B), Q.symmetric(X)) assert ask(Q.invertible(B), Q.invertible(X)) assert ask(Q.diagonal(B), Q.diagonal(X)) assert ask(Q.orthogonal(B), Q.orthogonal(X)) assert ask(Q.upper_triangular(B), Q.upper_triangular(X)) assert not ask(Q.symmetric(C), Q.symmetric(X)) assert not ask(Q.invertible(C), Q.invertible(X)) assert not ask(Q.diagonal(C), Q.diagonal(X)) assert not ask(Q.orthogonal(C), Q.orthogonal(X)) assert not ask(Q.upper_triangular(C), Q.upper_triangular(X))
def test_adjoint(): Sq = MatrixSymbol('Sq', n, n) assert Adjoint(A).shape == (m, n) assert Adjoint(A * B).shape == (l, n) assert Adjoint(Adjoint(A)) == A assert Adjoint(eye(3)) == eye(3) assert Adjoint(S(5)) == S(5) assert Adjoint(Matrix([[1, 2], [3, 4]])) == Matrix([[1, 3], [2, 4]]) assert Adjoint(Trace(Sq)) == conjugate(Trace(Sq)) assert Trace(Adjoint(Sq)) == conjugate(Trace(Sq)) assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0])
def test_adjoint(): Sq = MatrixSymbol("Sq", n, n) assert Adjoint(A).shape == (m, n) assert Adjoint(A * B).shape == (l, n) assert adjoint(Adjoint(A)) == A assert isinstance(Adjoint(Adjoint(A)), Adjoint) assert conjugate(Adjoint(A)) == Transpose(A) assert transpose(Adjoint(A)) == Adjoint(Transpose(A)) assert Adjoint(eye(3)).doit() == eye(3) assert Adjoint(S(5)).doit() == S(5) assert Adjoint(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]]) assert adjoint(trace(Sq)) == conjugate(trace(Sq)) assert trace(adjoint(Sq)) == conjugate(trace(Sq)) assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0]) assert Adjoint(A * B).doit() == Adjoint(B) * Adjoint(A)
def test_DiagonalOf(): x = MatrixSymbol('x', n, n) d = DiagonalOf(x) assert d.shape == (n, 1) assert d.diagonal_length == n assert d[2, 0] == d[2] == x[2, 2] x = MatrixSymbol('x', n, m) d = DiagonalOf(x) assert d.shape == (None, 1) assert d.diagonal_length is None assert d[2, 0] == d[2] == x[2, 2] d = DiagonalOf(MatrixSymbol('x', 4, 3)) assert d.shape == (3, 1) d = DiagonalOf(MatrixSymbol('x', n, 3)) assert d.shape == (3, 1) d = DiagonalOf(MatrixSymbol('x', 3, n)) assert d.shape == (3, 1) x = MatrixSymbol('x', n, m) assert [DiagonalOf(x)[i] for i in range(4)] == [x[0, 0], x[1, 1], x[2, 2], x[3, 3]]
def test_negative_index(): X = MatrixSymbol('x', 10, 10) assert X[-1, :] == X[9, :]
def test_slice_of_slice(): X = MatrixSymbol('x', 10, 10) assert X[2, :][:, 3][0, 0] == X[2, 3] assert X[:5, :5][:4, :4] == X[:4, :4] assert X[1:5, 2:6][1:3, 2] == X[2:4, 4] assert X[1:9:2, 2:6][1:3, 2] == X[3:7:2, 4]
def test_symmetry(): X = MatrixSymbol('x', 10, 10) Y = X[:5, 5:] with assuming(Q.symmetric(X)): assert Y.T == X[5:, :5]
def test_exceptions(): X = MatrixSymbol('x', 10, 20) raises(IndexError, lambda: X[0:12, 2]) raises(IndexError, lambda: X[0:9, 22]) raises(IndexError, lambda: X[-1:5, 2])