Esempio n. 1
0
    def to_rational(ctx, s, limit=True):
        p, q = to_rational(s._mpf_)

        if not limit or q <= ctx.max_denom:
            return p, q

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = p, q

        while True:
            a = n // d
            q2 = q0 + a * q1
            if q2 > ctx.max_denom:
                break
            p0, q0, p1, q1 = p1, q1, p0 + a * p1, q2
            n, d = d, n - a * d

        k = (ctx.max_denom - q0) // q1

        number = mpq(p, q)
        bound1 = mpq(p0 + k * p1, q0 + k * q1)
        bound2 = mpq(p1, q1)

        if not bound2 or not bound1:
            return p, q
        elif abs(bound2 - number) <= abs(bound1 - number):
            return bound2._mpq_
        else:
            return bound1._mpq_
Esempio n. 2
0
    def to_rational(ctx, s, limit=True):
        p, q = to_rational(s._mpf_)

        if not limit or q <= ctx.max_denom:
            return p, q

        p0, q0, p1, q1 = 0, 1, 1, 0
        n, d = p, q

        while True:
            a = n//d
            q2 = q0 + a*q1
            if q2 > ctx.max_denom:
                break
            p0, q0, p1, q1 = p1, q1, p0 + a*p1, q2
            n, d = d, n - a*d

        k = (ctx.max_denom - q0)//q1

        number = mpq(p, q)
        bound1 = mpq(p0 + k*p1, q0 + k*q1)
        bound2 = mpq(p1, q1)

        if not bound2 or not bound1:
            return p, q
        elif abs(bound2 - number) <= abs(bound1 - number):
            return bound2._mpq_
        else:
            return bound1._mpq_
Esempio n. 3
0
def test_hash():
    for i in range(-256, 256):
        assert hash(mpf(i)) == hash(i)
    assert hash(mpf(0.5)) == hash(0.5)
    assert hash(mpc(2,3)) == hash(2+3j)
    # Check that this doesn't fail
    assert hash(inf)
    # Check that overflow doesn't assign equal hashes to large numbers
    assert hash(mpf('1e1000')) != hash('1e10000')
    assert hash(mpc(100,'1e1000')) != hash(mpc(200,'1e1000'))
    from sympy.mpmath.rational import mpq
    assert hash(mp.mpq(1,3))
    assert hash(mp.mpq(0,1)) == 0
    assert hash(mp.mpq(-1,1)) == hash(-1)
    assert hash(mp.mpq(1,1)) == hash(1)
    assert hash(mp.mpq(5,1)) == hash(5)
    assert hash(mp.mpq(1,2)) == hash(0.5)
    if sys.version >= "3.2":
        assert hash(mpf(1)*2**2000) == hash(2**2000)
        assert hash(mpf(1)/2**2000) == hash(mpq(1,2**2000))
Esempio n. 4
0
def test_hash():
    for i in range(-256, 256):
        assert hash(mpf(i)) == hash(i)
    assert hash(mpf(0.5)) == hash(0.5)
    assert hash(mpc(2, 3)) == hash(2 + 3j)
    # Check that this doesn't fail
    assert hash(inf)
    # Check that overflow doesn't assign equal hashes to large numbers
    assert hash(mpf('1e1000')) != hash('1e10000')
    assert hash(mpc(100, '1e1000')) != hash(mpc(200, '1e1000'))
    from sympy.mpmath.rational import mpq
    assert hash(mp.mpq(1, 3))
    assert hash(mp.mpq(0, 1)) == 0
    assert hash(mp.mpq(-1, 1)) == hash(-1)
    assert hash(mp.mpq(1, 1)) == hash(1)
    assert hash(mp.mpq(5, 1)) == hash(5)
    assert hash(mp.mpq(1, 2)) == hash(0.5)
    if sys.version >= "3.2":
        assert hash(mpf(1) * 2**2000) == hash(2**2000)
        assert hash(mpf(1) / 2**2000) == hash(mpq(1, 2**2000))
Esempio n. 5
0
def test_isnan_etc():
    from sympy.mpmath.rational import mpq
    assert isnan(nan) == True
    assert isnan(3) == False
    assert isnan(mpf(3)) == False
    assert isnan(inf) == False
    assert isnan(mpc(2,nan)) == True
    assert isnan(mpc(2,nan)) == True
    assert isnan(mpc(nan,nan)) == True
    assert isnan(mpc(2,2)) == False
    assert isnan(mpc(nan,inf)) == True
    assert isnan(mpc(inf,inf)) == False
    assert isnan(mpq((3,2))) == False
    assert isnan(mpq((0,1))) == False
    assert isinf(inf) == True
    assert isinf(-inf) == True
    assert isinf(3) == False
    assert isinf(nan) == False
    assert isinf(3+4j) == False
    assert isinf(mpc(inf)) == True
    assert isinf(mpc(3,inf)) == True
    assert isinf(mpc(inf,3)) == True
    assert isinf(mpc(inf,inf)) == True
    assert isinf(mpc(nan,inf)) == True
    assert isinf(mpc(inf,nan)) == True
    assert isinf(mpc(nan,nan)) == False
    assert isinf(mpq((3,2))) == False
    assert isinf(mpq((0,1))) == False
    assert isnormal(3) == True
    assert isnormal(3.5) == True
    assert isnormal(mpf(3.5)) == True
    assert isnormal(0) == False
    assert isnormal(mpf(0)) == False
    assert isnormal(0.0) == False
    assert isnormal(inf) == False
    assert isnormal(-inf) == False
    assert isnormal(nan) == False
    assert isnormal(float(inf)) == False
    assert isnormal(mpc(0,0)) == False
    assert isnormal(mpc(3,0)) == True
    assert isnormal(mpc(0,3)) == True
    assert isnormal(mpc(3,3)) == True
    assert isnormal(mpc(0,nan)) == False
    assert isnormal(mpc(0,inf)) == False
    assert isnormal(mpc(3,nan)) == False
    assert isnormal(mpc(3,inf)) == False
    assert isnormal(mpc(3,-inf)) == False
    assert isnormal(mpc(nan,0)) == False
    assert isnormal(mpc(inf,0)) == False
    assert isnormal(mpc(nan,3)) == False
    assert isnormal(mpc(inf,3)) == False
    assert isnormal(mpc(inf,nan)) == False
    assert isnormal(mpc(nan,inf)) == False
    assert isnormal(mpc(nan,nan)) == False
    assert isnormal(mpc(inf,inf)) == False
    assert isnormal(mpq((3,2))) == True
    assert isnormal(mpq((0,1))) == False
    assert isint(3) == True
    assert isint(0) == True
    assert isint(3L) == True
    assert isint(0L) == True
    assert isint(mpf(3)) == True
    assert isint(mpf(0)) == True
    assert isint(mpf(-3)) == True
    assert isint(mpf(3.2)) == False
    assert isint(3.2) == False
    assert isint(nan) == False
    assert isint(inf) == False
    assert isint(-inf) == False
    assert isint(mpc(0)) == True
    assert isint(mpc(3)) == True
    assert isint(mpc(3.2)) == False
    assert isint(mpc(3,inf)) == False
    assert isint(mpc(inf)) == False
    assert isint(mpc(3,2)) == False
    assert isint(mpc(0,2)) == False
    assert isint(mpc(3,2),gaussian=True) == True
    assert isint(mpc(3,0),gaussian=True) == True
    assert isint(mpc(0,3),gaussian=True) == True
    assert isint(3+4j) == False
    assert isint(3+4j, gaussian=True) == True
    assert isint(3+0j) == True
    assert isint(mpq((3,2))) == False
    assert isint(mpq((3,9))) == False
    assert isint(mpq((9,3))) == True
    assert isint(mpq((0,4))) == True
    assert isint(mpq((1,1))) == True
    assert isint(mpq((-1,1))) == True
    assert mp.isnpint(0) == True
    assert mp.isnpint(1) == False
    assert mp.isnpint(-1) == True
    assert mp.isnpint(-1.1) == False
    assert mp.isnpint(-1.0) == True
    assert mp.isnpint(mp.mpq(1,2)) == False
    assert mp.isnpint(mp.mpq(-1,2)) == False
    assert mp.isnpint(mp.mpq(-3,1)) == True
    assert mp.isnpint(mp.mpq(0,1)) == True
    assert mp.isnpint(mp.mpq(1,1)) == False
    assert mp.isnpint(0+0j) == True
    assert mp.isnpint(-1+0j) == True
    assert mp.isnpint(-1.1+0j) == False
    assert mp.isnpint(-1+0.1j) == False
    assert mp.isnpint(0+0.1j) == False