Esempio n. 1
1
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]]))
Esempio n. 2
0
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1],
                                                       [-k / m, -c / m]]))
Esempio n. 3
0
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(BL, FL)

    assert KM.bodies == BL

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)

    assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1],
                                                       [-k / m, -c / m]]))
Esempio n. 4
0
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)
Esempio n. 5
0
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, c, k = symbols('m c k')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)

    assert (KM.linearize(A_and_B=True,
                         new_method=True)[0] == Matrix([[0, 1],
                                                        [-k / m, -c / m]]))

    # Ensure that the old linearizer still works and that the new linearizer
    # gives the same results. The old linearizer is deprecated and should be
    # removed in >= 1.0.
    M_old = KM.mass_matrix_full
    # The old linearizer raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        F_A_old, F_B_old, r_old = KM.linearize()
    M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
    assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
Esempio n. 6
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols("q1 q2 u1 u2")
    q1d, q2d, u1d, u2d = dynamicsymbols("q1 q2 u1 u2", 1)
    m, c1, c2, k1, k2 = symbols("m c1 c2 k1 k2")
    N = ReferenceFrame("N")
    P1 = Point("P1")
    P2 = Point("P2")
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [
        (P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x),
        (P2, (-k2 * q2 - c2 * u2) * N.x),
    ]
    pa1 = Particle("pa1", P1, m)
    pa2 = Particle("pa2", P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(
        (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) / m)
    assert expand(rhs[1]) == expand(
        (k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        4, 1)
Esempio n. 7
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    KM.kanes_equations(BL, FL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)

    # Make sure an error is raised if nonlinear kinematic differential
    # equations are supplied.
    kd = [q1d - u1**2, sin(q2d) - cos(u2)]
    raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2],
                                           u_ind=[u1, u2], kd_eqs=kd))
Esempio n. 8
0
def test_one_dof():
    # This is for a 1 dof spring-mass-damper case.
    # It is described in more detail in the KanesMethod docstring.
    q, u = dynamicsymbols("q u")
    qd, ud = dynamicsymbols("q u", 1)
    m, c, k = symbols("m c k")
    N = ReferenceFrame("N")
    P = Point("P")
    P.set_vel(N, u * N.x)

    kd = [qd - u]
    FL = [(P, (-k * q - c * u) * N.x)]
    pa = Particle("pa", P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)

    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand(-(q * k + u * c) / m)

    assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)

    assert KM.linearize(A_and_B=True, new_method=True)[0] == Matrix([[0, 1], [-k / m, -c / m]])

    # Ensure that the old linearizer still works and that the new linearizer
    # gives the same results. The old linearizer is deprecated and should be
    # removed in >= 1.0.
    M_old = KM.mass_matrix_full
    # The old linearizer raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        F_A_old, F_B_old, r_old = KM.linearize()
    M_new, F_A_new, F_B_new, r_new = KM.linearize(new_method=True)
    assert simplify(M_new.inv() * F_A_new - M_old.inv() * F_A_old) == zeros(2)
Esempio n. 9
0
def test_two_dof():
    # This is for a 2 d.o.f., 2 particle spring-mass-damper.
    # The first coordinate is the displacement of the first particle, and the
    # second is the relative displacement between the first and second
    # particles. Speeds are defined as the time derivatives of the particles.
    q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
    q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
    m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
    N = ReferenceFrame('N')
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]

    # Now we create the list of forces, then assign properties to each
    # particle, then create a list of all particles.
    FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
        q2 - c2 * u2) * N.x)]
    pa1 = Particle('pa1', P1, m)
    pa2 = Particle('pa2', P2, m)
    BL = [pa1, pa2]

    # Finally we create the KanesMethod object, specify the inertial frame,
    # pass relevant information, and form Fr & Fr*. Then we calculate the mass
    # matrix and forcing terms, and finally solve for the udots.
    KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd)
    # The old input format raises a deprecation warning, so catch it here so
    # it doesn't cause py.test to fail.
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
    assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
                                    c2 * u2) / m)

    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1)
Esempio n. 10
0
def test_pend():
    q, u = dynamicsymbols("q u")
    qd, ud = dynamicsymbols("q u", 1)
    m, l, g = symbols("m l g")
    N = ReferenceFrame("N")
    P = Point("P")
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle("pa", P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
    assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
Esempio n. 11
0
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1)
Esempio n. 12
0
def test_pend():
    q, u = dynamicsymbols("q u")
    qd, ud = dynamicsymbols("q u", 1)
    m, l, g = symbols("m l g")
    N = ReferenceFrame("N")
    P = Point("P")
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle("pa", P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    with warns_deprecated_sympy():
        KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        2, 1)
Esempio n. 13
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warns_deprecated_sympy():
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([
        (6 * u2 * u3 * r - u3**2 * r * tan(q2) + 4 * g * sin(q2)) / (5 * r),
        -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True)[0]
    A_upright = A.subs({
        r: 1,
        g: 1,
        m: 1
    }).subs({
        q1: 0,
        q2: 0,
        q3: 0,
        u1: 0,
        u3: 0
    })
    import sympy
    assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {
        S.Zero: 6
    }
Esempio n. 14
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, - m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) +
        4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True, new_method=True)[0]
    A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0})
    import sympy
    assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S(0): 6}