def test_twave(): A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') n = Symbol('n') # Refractive index t = Symbol('t') # Time x = Symbol('x') # Spatial varaible k = Symbol('k') # Wave number E = Function('E') exp = C.exp w1 = TWave(A1, f, phi1) w2 = TWave(A2, f, phi2) assert w1.amplitude == A1 assert w1.frequency == f assert w1.phase == phi1 assert w1.wavelength == c/(f*n) assert w1.time_period == 1/f w3 = w1 + w2 assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2) assert w3.frequency == f assert w3.wavelength == c/(f*n) assert w3.time_period == 1/f assert w3.angular_velocity == 2*pi*f assert w3.wavenumber == 2*pi*f*n/c assert simplify(w3.rewrite('sin') - sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)*sin(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + phi1 + phi2 + pi/2)) == 0 assert w3.rewrite('pde') == epsilon*mu*Derivative(E(x, t), t, t) + Derivative(E(x, t), x, x) assert w3.rewrite(cos) == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)*cos(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + phi1 + phi2) assert w3.rewrite('exp') == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)*exp(I*(pi*f*n*x*s/(149896229*m) - 2*pi*f*t + phi1 + phi2))
def test_twave(): A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') n = Symbol('n') # Refractive index t = Symbol('t') # Time x = Symbol('x') # Spatial variable k = Symbol('k') # Wavenumber E = Function('E') w1 = TWave(A1, f, phi1) w2 = TWave(A2, f, phi2) assert w1.amplitude == A1 assert w1.frequency == f assert w1.phase == phi1 assert w1.wavelength == c / (f * n) assert w1.time_period == 1 / f assert w1.angular_velocity == 2 * pi * f assert w1.wavenumber == 2 * pi * f * n / c assert w1.speed == c / n w3 = w1 + w2 assert w3.amplitude == sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) assert w3.frequency == f assert w3.phase == atan2(A1 * cos(phi1) + A2 * cos(phi2), A1 * sin(phi1) + A2 * sin(phi2)) assert w3.wavelength == c / (f * n) assert w3.time_period == 1 / f assert w3.angular_velocity == 2 * pi * f assert w3.wavenumber == 2 * pi * f * n / c assert w3.speed == c / n assert simplify( w3.rewrite(sin) - sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) * sin(pi * f * n * x * s / (149896229 * m) - 2 * pi * f * t + atan2(A1 * cos(phi1) + A2 * cos(phi2), A1 * sin(phi1) + A2 * sin(phi2)) + pi / 2)) == 0 assert w3.rewrite('pde') == epsilon * mu * Derivative(E( x, t), t, t) + Derivative(E(x, t), x, x) assert w3.rewrite( cos) == sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) * cos(pi * f * n * x * s / (149896229 * m) - 2 * pi * f * t + atan2(A1 * cos(phi1) + A2 * cos(phi2), A1 * sin(phi1) + A2 * sin(phi2))) assert w3.rewrite( exp) == sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) * exp( I * (pi * f * n * x * s / (149896229 * m) - 2 * pi * f * t + atan2(A1 * cos(phi1) + A2 * cos(phi2), A1 * sin(phi1) + A2 * sin(phi2)))) w4 = TWave(A1, None, 0, 1 / f) assert w4.frequency == f raises(ValueError, lambda: TWave(A1)) raises(ValueError, lambda: TWave(A1, f, phi1, t))
def test_twave(): A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') c = Symbol('c') # Speed of light in vacuum n = Symbol('n') # Refractive index t = Symbol('t') # Time w1 = TWave(A1, f, phi1) w2 = TWave(A2, f, phi2) assert w1.amplitude == A1 assert w1.frequency == f assert w1.phase == phi1 assert w1.wavelength == c / (f * n) assert w1.time_period == 1 / f w3 = w1 + w2 assert w3.amplitude == sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) assert w3.frequency == f assert w3.wavelength == c / (f * n) assert w3.time_period == 1 / f assert w3.angular_velocity == 2 * pi * f assert w3.equation() == sqrt(A1**2 + 2 * A1 * A2 * cos(phi1 - phi2) + A2**2) * cos(2 * pi * f * t + phi1 + phi2)