Esempio n. 1
0
def test_latex_printer():
    r = Function('r')('t')
    assert VectorLatexPrinter().doprint(r**2) == "r^{2}"
    r2 = Function('r^2')('t')
    assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
    ra = Function('r__a')('t')
    assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'
Esempio n. 2
0
def test_latex_printer():
    r = Function("r")("t")
    assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
    r2 = Function("r^2")("t")
    assert VectorLatexPrinter().doprint(r2.diff()) == r"\dot{r^{2}}"
    ra = Function("r__a")("t")
    assert VectorLatexPrinter().doprint(ra.diff().diff()) == r"\ddot{r^{a}}"
Esempio n. 3
0
def test_vector_latex():

    a, b, c, d, omega = symbols('a, b, c, d, omega')

    v = (a ** 2 + b / c) * A.x + sqrt(d) * A.y + cos(omega) * A.z

    assert v._latex() == (r'(a^{2} + \frac{b}{c})\mathbf{\hat{a}_x} + '
                          r'\sqrt{d}\mathbf{\hat{a}_y} + '
                          r'\operatorname{cos}\left(\omega\right)'
                          r'\mathbf{\hat{a}_z}')

    theta, omega, alpha, q = dynamicsymbols('theta, omega, alpha, q')

    v = theta * A.x + omega * omega * A.y + (q * alpha) * A.z

    assert v._latex() == (r'\theta\mathbf{\hat{a}_x} + '
                          r'\omega^{2}\mathbf{\hat{a}_y} + '
                          r'\alpha q\mathbf{\hat{a}_z}')

    phi1, phi2, phi3 = dynamicsymbols('phi1, phi2, phi3')
    theta1, theta2, theta3 = symbols('theta1, theta2, theta3')

    v = (sin(theta1) * A.x +
         cos(phi1) * cos(phi2) * A.y +
         cos(theta1 + phi3) * A.z)

    assert v._latex() == (r'\operatorname{sin}\left(\theta_{1}\right)'
                          r'\mathbf{\hat{a}_x} + \operatorname{cos}'
                          r'\left(\phi_{1}\right) \operatorname{cos}'
                          r'\left(\phi_{2}\right)\mathbf{\hat{a}_y} + '
                          r'\operatorname{cos}\left(\theta_{1} + '
                          r'\phi_{3}\right)\mathbf{\hat{a}_z}')

    N = ReferenceFrame('N')

    a, b, c, d, omega = symbols('a, b, c, d, omega')

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (r'(a^{2} + \frac{b}{c})\mathbf{\hat{n}_x} + '
                r'\sqrt{d}\mathbf{\hat{n}_y} + '
                r'\operatorname{cos}\left(\omega\right)'
                r'\mathbf{\hat{n}_z}')

    assert v._latex() == expected
    lp = VectorLatexPrinter()
    assert lp.doprint(v) == expected

    # Try custom unit vectors.

    N = ReferenceFrame('N', latexs=(r'\hat{i}', r'\hat{j}', r'\hat{k}'))

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (r'(a^{2} + \frac{b}{c})\hat{i} + '
                r'\sqrt{d}\hat{j} + '
                r'\operatorname{cos}\left(\omega\right)\hat{k}')
    assert v._latex() == expected
Esempio n. 4
0
    def _latex(self, printer=None):
        """Latex Printing method. """

        from sympy.physics.vector.printing import VectorLatexPrinter

        ar = self.args  # just to shorten things
        if len(ar) == 0:
            return str(0)
        ol = []  # output list, to be concatenated to a string
        for i, v in enumerate(ar):
            for j in 0, 1, 2:
                # if the coef of the basis vector is 1, we skip the 1
                if ar[i][0][j] == 1:
                    ol.append(" + " + ar[i][1].latex_vecs[j])
                # if the coef of the basis vector is -1, we skip the 1
                elif ar[i][0][j] == -1:
                    ol.append(" - " + ar[i][1].latex_vecs[j])
                elif ar[i][0][j] != 0:
                    # If the coefficient of the basis vector is not 1 or -1;
                    # also, we might wrap it in parentheses, for readability.
                    arg_str = VectorLatexPrinter().doprint(ar[i][0][j])
                    if isinstance(ar[i][0][j], Add):
                        arg_str = "(%s)" % arg_str
                    if arg_str[0] == "-":
                        arg_str = arg_str[1:]
                        str_start = " - "
                    else:
                        str_start = " + "
                    ol.append(str_start + arg_str + ar[i][1].latex_vecs[j])
        outstr = "".join(ol)
        if outstr.startswith(" + "):
            outstr = outstr[3:]
        elif outstr.startswith(" "):
            outstr = outstr[1:]
        return outstr
Esempio n. 5
0
def vlatex(expr, **settings):
    r"""Function for printing latex representation of sympy.physics.vector
    objects.

    For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the
    same options as SymPy's latex(); see that function for more information;

    Parameters
    ==========

    expr : valid sympy object
        SymPy expression to represent in LaTeX form
    settings : args
        Same as latex()

    Examples
    ========

    >>> from sympy.physics.vector import vlatex, ReferenceFrame, dynamicsymbols
    >>> N = ReferenceFrame('N')
    >>> q1, q2 = dynamicsymbols('q1 q2')
    >>> q1d, q2d = dynamicsymbols('q1 q2', 1)
    >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2)
    >>> vlatex(N.x + N.y)
    '\\mathbf{\\hat{n}_x} + \\mathbf{\\hat{n}_y}'
    >>> vlatex(q1 + q2)
    'q_{1} + q_{2}'
    >>> vlatex(q1d)
    '\\dot{q}_{1}'
    >>> vlatex(q1 * q2d)
    'q_{1} \\dot{q}_{2}'
    >>> vlatex(q1dd * q1 / q1d)
    '\\frac{q_{1} \\ddot{q}_{1}}{\\dot{q}_{1}}'

    """

    return VectorLatexPrinter(settings).doprint(expr)
Esempio n. 6
0
def test_latex_printer():
    r = Function('r')('t')
    assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
Esempio n. 7
0
def test_vector_latex():

    a, b, c, d, omega = symbols("a, b, c, d, omega")

    v = (a ** 2 + b / c) * A.x + sqrt(d) * A.y + cos(omega) * A.z

    assert v._latex() == (
        r"(a^{2} + \frac{b}{c})\mathbf{\hat{a}_x} + "
        r"\sqrt{d}\mathbf{\hat{a}_y} + "
        r"\operatorname{cos}\left(\omega\right)"
        r"\mathbf{\hat{a}_z}"
    )

    theta, omega, alpha, q = dynamicsymbols("theta, omega, alpha, q")

    v = theta * A.x + omega * omega * A.y + (q * alpha) * A.z

    assert v._latex() == (
        r"\theta\mathbf{\hat{a}_x} + "
        r"\omega^{2}\mathbf{\hat{a}_y} + "
        r"\alpha q\mathbf{\hat{a}_z}"
    )

    phi1, phi2, phi3 = dynamicsymbols("phi1, phi2, phi3")
    theta1, theta2, theta3 = symbols("theta1, theta2, theta3")

    v = sin(theta1) * A.x + cos(phi1) * cos(phi2) * A.y + cos(theta1 + phi3) * A.z

    assert v._latex() == (
        r"\operatorname{sin}\left(\theta_{1}\right)"
        r"\mathbf{\hat{a}_x} + \operatorname{cos}"
        r"\left(\phi_{1}\right) \operatorname{cos}"
        r"\left(\phi_{2}\right)\mathbf{\hat{a}_y} + "
        r"\operatorname{cos}\left(\theta_{1} + "
        r"\phi_{3}\right)\mathbf{\hat{a}_z}"
    )

    N = ReferenceFrame("N")

    a, b, c, d, omega = symbols("a, b, c, d, omega")

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (
        r"(a^{2} + \frac{b}{c})\mathbf{\hat{n}_x} + "
        r"\sqrt{d}\mathbf{\hat{n}_y} + "
        r"\operatorname{cos}\left(\omega\right)"
        r"\mathbf{\hat{n}_z}"
    )

    assert v._latex() == expected
    lp = VectorLatexPrinter()
    assert lp.doprint(v) == expected

    # Try custom unit vectors.

    N = ReferenceFrame("N", latexs=(r"\hat{i}", r"\hat{j}", r"\hat{k}"))

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (
        r"(a^{2} + \frac{b}{c})\hat{i} + "
        r"\sqrt{d}\hat{j} + "
        r"\operatorname{cos}\left(\omega\right)\hat{k}"
    )
    assert v._latex() == expected

    expected = (
        r"\alpha\mathbf{\hat{n}_x} + \operatorname{asin}\left(\omega"
        r"\right)\mathbf{\hat{n}_y} -  \beta \dot{\alpha}\mathbf{\hat{n}_z}"
    )
    assert ww._latex() == expected
    assert lp.doprint(ww) == expected

    expected = (
        r"- \mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} - "
        r"\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}"
    )
    assert xx._latex() == expected
    assert lp.doprint(xx) == expected

    expected = (
        r"\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + "
        r"\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}"
    )
    assert xx2._latex() == expected
    assert lp.doprint(xx2) == expected