Esempio n. 1
0
def test_Real():
    # NOTE prec is the whole number of decimal digits
    assert str(Real('1.23', prec=1+2))    == '1.23'
    assert str(Real('1.23456789', prec=1+8))  == '1.23456789'
    assert str(Real('1.234567890123456789', prec=1+18))    == '1.234567890123456789'
    assert str(pi.evalf(1+2))   == '3.14'
    assert str(pi.evalf(1+14))  == '3.14159265358979'
    assert str(pi.evalf(1+64))  == '3.1415926535897932384626433832795028841971693993751058209749445923'
Esempio n. 2
0
def test_Float():
    # NOTE prec is the whole number of decimal digits
    assert str(Float("1.23", prec=1 + 2)) == "1.23"
    assert str(Float("1.23456789", prec=1 + 8)) == "1.23456789"
    assert str(Float("1.234567890123456789", prec=1 + 18)) == "1.234567890123456789"
    assert str(pi.evalf(1 + 2)) == "3.14"
    assert str(pi.evalf(1 + 14)) == "3.14159265358979"
    assert str(pi.evalf(1 + 64)) == "3.1415926535897932384626433832795028841971693993751058209749445923"
Esempio n. 3
0
def test_Float():
    # NOTE prec is the whole number of decimal digits
    assert str(Float("1.23", prec=1 + 2)) == "1.23"
    assert str(Float("1.23456789", prec=1 + 8)) == "1.23456789"
    assert str(Float("1.234567890123456789", prec=1 + 18)) == "1.234567890123456789"
    assert str(pi.evalf(1 + 2)) == "3.14"
    assert str(pi.evalf(1 + 14)) == "3.14159265358979"
    assert str(pi.evalf(1 + 64)) == ("3.141592653589793238462643383279" "5028841971693993751058209749445923")
    assert str(pi.round(-1)) == "0."
    assert str((pi ** 400 - (pi ** 400).round(1)).n(2)) == "-0.e+88"
Esempio n. 4
0
def test_Float():
    # NOTE prec is the whole number of decimal digits
    assert str(Float('1.23', prec=1+2))    == '1.23'
    assert str(Float('1.23456789', prec=1+8))  == '1.23456789'
    assert str(Float('1.234567890123456789', prec=1+18))    == '1.234567890123456789'
    assert str(pi.evalf(1+2))   == '3.14'
    assert str(pi.evalf(1+14))  == '3.14159265358979'
    assert str(pi.evalf(1+64))  == '3.1415926535897932384626433832795028841971693993751058209749445923'
    assert str(pi.round(-1)) == '0.'
    assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
Esempio n. 5
0
def test_Float():
    # NOTE prec is the whole number of decimal digits
    assert str(Float('1.23', prec=1 + 2)) == '1.23'
    assert str(Float('1.23456789', prec=1 + 8)) == '1.23456789'
    assert str(Float('1.234567890123456789',
                     prec=1 + 18)) == '1.234567890123456789'
    assert str(pi.evalf(1 + 2)) == '3.14'
    assert str(pi.evalf(1 + 14)) == '3.14159265358979'
    assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
                                     '5028841971693993751058209749445923')
    assert str(pi.round(-1)) == '0.'
    assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
Esempio n. 6
0
def test_fcode_NumberSymbol():
    assert fcode(Catalan) == '      parameter (Catalan = 0.915965594177219)\n      Catalan'
    assert fcode(EulerGamma) == '      parameter (EulerGamma = 0.577215664901533)\n      EulerGamma'
    assert fcode(E) == '      parameter (E = 2.71828182845905)\n      E'
    assert fcode(GoldenRatio) == '      parameter (GoldenRatio = 1.61803398874989)\n      GoldenRatio'
    assert fcode(pi) == '      parameter (pi = 3.14159265358979)\n      pi'
    assert fcode(pi,precision=5) == '      parameter (pi = 3.1416)\n      pi'
    assert fcode(Catalan,human=False) == ([('Catalan', Catalan.evalf(15))], set([]), '      Catalan')
    assert fcode(EulerGamma,human=False) == ([('EulerGamma', EulerGamma.evalf(15))], set([]), '      EulerGamma')
    assert fcode(E,human=False) == ([('E', E.evalf(15))], set([]), '      E')
    assert fcode(GoldenRatio,human=False) == ([('GoldenRatio', GoldenRatio.evalf(15))], set([]), '      GoldenRatio')
    assert fcode(pi,human=False) == ([('pi', pi.evalf(15))], set([]), '      pi')
    assert fcode(pi,precision=5,human=False) == ([('pi', pi.evalf(5))], set([]), '      pi')
Esempio n. 7
0
def test_fcode_NumberSymbol():
    prec = 17
    p = FCodePrinter()
    assert fcode(
        Catalan
    ) == "      parameter (Catalan = %sd0)\n      Catalan" % Catalan.evalf(
        prec)
    assert fcode(
        EulerGamma
    ) == "      parameter (EulerGamma = %sd0)\n      EulerGamma" % EulerGamma.evalf(
        prec)
    assert fcode(E) == "      parameter (E = %sd0)\n      E" % E.evalf(prec)
    assert fcode(
        GoldenRatio
    ) == "      parameter (GoldenRatio = %sd0)\n      GoldenRatio" % GoldenRatio.evalf(
        prec)
    assert fcode(
        pi) == "      parameter (pi = %sd0)\n      pi" % pi.evalf(prec)
    assert fcode(
        pi,
        precision=5) == "      parameter (pi = %sd0)\n      pi" % pi.evalf(5)
    assert fcode(Catalan, human=False) == (
        set([(Catalan, p._print(Catalan.evalf(prec)))]),
        set([]),
        "      Catalan",
    )
    assert fcode(EulerGamma, human=False) == (
        set([(EulerGamma, p._print(EulerGamma.evalf(prec)))]),
        set([]),
        "      EulerGamma",
    )
    assert fcode(E, human=False) == (
        set([(E, p._print(E.evalf(prec)))]),
        set([]),
        "      E",
    )
    assert fcode(GoldenRatio, human=False) == (
        set([(GoldenRatio, p._print(GoldenRatio.evalf(prec)))]),
        set([]),
        "      GoldenRatio",
    )
    assert fcode(pi, human=False) == (
        set([(pi, p._print(pi.evalf(prec)))]),
        set([]),
        "      pi",
    )
    assert fcode(pi, precision=5, human=False) == (
        set([(pi, p._print(pi.evalf(5)))]),
        set([]),
        "      pi",
    )
Esempio n. 8
0
def test_fcode_NumberSymbol():
    p = FCodePrinter()
    assert fcode(Catalan) == '      parameter (Catalan = 0.915965594177219d0)\n      Catalan'
    assert fcode(EulerGamma) == '      parameter (EulerGamma = 0.577215664901533d0)\n      EulerGamma'
    assert fcode(E) == '      parameter (E = 2.71828182845905d0)\n      E'
    assert fcode(GoldenRatio) == '      parameter (GoldenRatio = 1.61803398874989d0)\n      GoldenRatio'
    assert fcode(pi) == '      parameter (pi = 3.14159265358979d0)\n      pi'
    assert fcode(pi,precision=5) == '      parameter (pi = 3.1416d0)\n      pi'
    assert fcode(Catalan,human=False) == (set([(Catalan, p._print(Catalan.evalf(15)))]), set([]), '      Catalan')
    assert fcode(EulerGamma,human=False) == (set([(EulerGamma, p._print(EulerGamma.evalf(15)))]), set([]), '      EulerGamma')
    assert fcode(E,human=False) == (set([(E, p._print(E.evalf(15)))]), set([]), '      E')
    assert fcode(GoldenRatio,human=False) == (set([(GoldenRatio, p._print(GoldenRatio.evalf(15)))]), set([]), '      GoldenRatio')
    assert fcode(pi,human=False) == (set([(pi, p._print(pi.evalf(15)))]), set([]), '      pi')
    assert fcode(pi,precision=5,human=False) == (set([(pi, p._print(pi.evalf(5)))]), set([]), '      pi')
Esempio n. 9
0
def test_fcode_NumberSymbol():
    p = FCodePrinter()
    assert fcode(Catalan) == '      parameter (Catalan = 0.915965594177219d0)\n      Catalan'
    assert fcode(EulerGamma) == '      parameter (EulerGamma = 0.577215664901533d0)\n      EulerGamma'
    assert fcode(E) == '      parameter (E = 2.71828182845905d0)\n      E'
    assert fcode(GoldenRatio) == '      parameter (GoldenRatio = 1.61803398874989d0)\n      GoldenRatio'
    assert fcode(pi) == '      parameter (pi = 3.14159265358979d0)\n      pi'
    assert fcode(pi,precision=5) == '      parameter (pi = 3.1416d0)\n      pi'
    assert fcode(Catalan,human=False) == (set([(Catalan, p._print(Catalan.evalf(15)))]), set([]), '      Catalan')
    assert fcode(EulerGamma,human=False) == (set([(EulerGamma, p._print(EulerGamma.evalf(15)))]), set([]), '      EulerGamma')
    assert fcode(E,human=False) == (set([(E, p._print(E.evalf(15)))]), set([]), '      E')
    assert fcode(GoldenRatio,human=False) == (set([(GoldenRatio, p._print(GoldenRatio.evalf(15)))]), set([]), '      GoldenRatio')
    assert fcode(pi,human=False) == (set([(pi, p._print(pi.evalf(15)))]), set([]), '      pi')
    assert fcode(pi,precision=5,human=False) == (set([(pi, p._print(pi.evalf(5)))]), set([]), '      pi')
Esempio n. 10
0
def test_Float():
    # NOTE dps is the whole number of decimal digits
    assert str(Float('1.23', dps=1 + 2)) == '1.23'
    assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
    assert str(
        Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
    assert str(pi.evalf(1 + 2)) == '3.14'
    assert str(pi.evalf(1 + 14)) == '3.14159265358979'
    assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
                                     '5028841971693993751058209749445923')
    assert str(pi.round(-1)) == '0.'
    assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
    assert str(Float(S.Infinity)) == 'inf'
    assert str(Float(S.NegativeInfinity)) == '-inf'
Esempio n. 11
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
    assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
    assert NS('log(1+1/10**50)', 20) == '1.0000000000000000000e-50'
    assert NS('log(10**100,10)', 10) == '100.0000000'
    assert NS('log(2)', 10) == '0.6931471806'
    assert NS('(sin(x)-x)/x**3', 15, subs={x:
                                           '1/10**50'}) == '-0.166666666666667'
    assert NS(sin(1) + Rational(1, 10**100) * I,
              15) == '0.841470984807897 + 1.00000000000000e-100*I'
    assert x.evalf() == x
    assert NS((1 + I)**2 * I, 6) == '-2.00000'
    d = {
        n: (-1)**Rational(6, 7),
        y: (-1)**Rational(4, 7),
        x: (-1)**Rational(2, 7)
    }
    assert NS((x * (1 + y * (1 + n))).subs(d).evalf(),
              6) == '0.346011 + 0.433884*I'
    assert NS(((-I - sqrt(2) * I)**2).evalf()) == '-5.82842712474619'
    assert NS((1 + I)**2 * I, 15) == '-2.00000000000000'
    #1659 (1/2):
    assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
    #1659 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844 * n**25 - 477638700 * n**37 - 19 * n,
              subs={n: .01}) == '19.8100000000000'
    assert NS(
        ((x - 1) * ((1 - x))**
         1000).n()) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)'
    assert NS((-x).n()) == '-x'
    assert NS((-2 * x).n()) == '-2.00000000000000*x'
    assert NS((-2 * x * y).n()) == '-2.00000000000000*x*y'
    #3561. Also NaN != mpmath.nan
    # In this order:
    # 0*nan, 0/nan, 0*inf, 0/inf
    # 0+nan, 0-nan, 0+inf, 0-inf
    # >>> n = Some Number
    # n*nan, n/nan, n*inf, n/inf
    # n+nan, n-nan, n+inf, n-inf
    assert (0 * sin(oo)).n() == S.Zero
    assert (0 / sin(oo)).n() == S.Zero
    assert (0 * E**(oo)).n() == S.NaN
    assert (0 / E**(oo)).n() == S.Zero

    assert (0 + sin(oo)).n() == S.NaN
    assert (0 - sin(oo)).n() == S.NaN
    assert (0 + E**(oo)).n() == S.Infinity
    assert (0 - E**(oo)).n() == S.NegativeInfinity

    assert (5 * sin(oo)).n() == S.NaN
    assert (5 / sin(oo)).n() == S.NaN
    assert (5 * E**(oo)).n() == S.Infinity
    assert (5 / E**(oo)).n() == S.Zero

    assert (5 + sin(oo)).n() == S.NaN
    assert (5 - sin(oo)).n() == S.NaN
    assert (5 + E**(oo)).n() == S.Infinity
    assert (5 - E**(oo)).n() == S.NegativeInfinity
Esempio n. 12
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
    assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
    assert NS('log(1+1/10**50)', 20) == '1.0000000000000000000e-50'
    assert NS('log(10**100,10)', 10) == '100.0000000'
    assert NS('log(2)', 10) == '0.6931471806'
    assert NS('(sin(x)-x)/x**3', 15, subs={x:
                                           '1/10**50'}) == '-0.166666666666667'
    assert NS(sin(1) + Rational(1, 10**100) * I,
              15) == '0.841470984807897 + 1.00000000000000e-100*I'
    assert x.evalf() == x
    assert NS((1 + I)**2 * I, 6) == '-2.00000'
    d = {
        n: (-1)**Rational(6, 7),
        y: (-1)**Rational(4, 7),
        x: (-1)**Rational(2, 7)
    }
    assert NS((x * (1 + y * (1 + n))).subs(d).evalf(),
              6) == '0.346011 + 0.433884*I'
    assert NS(((-I - sqrt(2) * I)**2).evalf()) == '-5.82842712474619'
    assert NS((1 + I)**2 * I, 15) == '-2.00000000000000'
    #1659 (1/2):
    assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
    #1659 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844 * n**25 - 477638700 * n**37 - 19 * n,
              subs={n: .01}) == '19.8100000000000'
    assert NS(
        ((x - 1) * ((1 - x))**
         1000).n()) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)'
    assert NS((-x).n()) == '-x'
    assert NS((-2 * x).n()) == '-2.00000000000000*x'
    assert NS((-2 * x * y).n()) == '-2.00000000000000*x*y'
Esempio n. 13
0
def test_Float():
    # NOTE dps is the whole number of decimal digits
    assert str(Float('1.23', dps=1 + 2)) == '1.23'
    assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
    assert str(
        Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
    assert str(pi.evalf(1 + 2)) == '3.14'
    assert str(pi.evalf(1 + 14)) == '3.14159265358979'
    assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
                                     '5028841971693993751058209749445923')
    assert str(pi.round(-1)) == '0.0'
    assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
    assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
    assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
    assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
    assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
Esempio n. 14
0
def test_nsolve():
    # onedimensional
    from sympy import Symbol, sin, pi
    x = Symbol('x')
    assert nsolve(sin(x), 2) - pi.evalf() < 1e-16
    assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
    # multidimensional
    x1 = Symbol('x1')
    x2 = Symbol('x2')
    f1 = 3 * x1**2 - 2 * x2**2 - 1
    f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
    f = Matrix((f1, f2)).T
    F = lambdify((x1, x2), f.T, modules='mpmath')
    for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
        x = nsolve(f, (x1, x2), x0, tol=1.e-8)
        assert mnorm(F(*x),1) <= 1.e-10
    # The Chinese mathematician Zhu Shijie was the very first to solve this
    # nonlinear system 700 years ago (z was added to make it 3-dimensional)
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = -x + 2*y
    f2 = (x**2 + x*(y**2 - 2) - 4*y)  /  (x + 4)
    f3 = sqrt(x**2 + y**2)*z
    f = Matrix((f1, f2, f3)).T
    F = lambdify((x,  y,  z), f.T, modules='mpmath')
    def getroot(x0):
        root = nsolve((f1,  f2,  f3), (x,  y,  z), x0)
        assert mnorm(F(*root),1) <= 1.e-8
        return root
    assert map(round,  getroot((1,  1,  1))) == [2.0,  1.0,  0.0]
Esempio n. 15
0
def test_nsolve():
    # onedimensional
    from sympy import Symbol, sin, pi
    x = Symbol('x')
    assert nsolve(sin(x), 2) - pi.evalf() < 1e-16
    assert nsolve(Eq(2 * x, 2), x, -10) == nsolve(2 * x - 2, -10)
    # multidimensional
    x1 = Symbol('x1')
    x2 = Symbol('x2')
    f1 = 3 * x1**2 - 2 * x2**2 - 1
    f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
    f = Matrix((f1, f2)).T
    F = lambdify((x1, x2), f.T, modules='mpmath')
    for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
        x = nsolve(f, (x1, x2), x0, tol=1.e-8)
        assert mnorm(F(*x), 1) <= 1.e-10
    # The Chinese mathematician Zhu Shijie was the very first to solve this
    # nonlinear system 700 years ago (z was added to make it 3-dimensional)
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = -x + 2 * y
    f2 = (x**2 + x * (y**2 - 2) - 4 * y) / (x + 4)
    f3 = sqrt(x**2 + y**2) * z
    f = Matrix((f1, f2, f3)).T
    F = lambdify((x, y, z), f.T, modules='mpmath')

    def getroot(x0):
        root = nsolve((f1, f2, f3), (x, y, z), x0)
        assert mnorm(F(*root), 1) <= 1.e-8
        return root

    assert map(round, getroot((1, 1, 1))) == [2.0, 1.0, 0.0]
Esempio n. 16
0
def test_evalf_bugs():
    assert NS(sin(1)+exp(-10**10),10) == NS(sin(1),10)
    assert NS(exp(10**10)+sin(1),10) == NS(exp(10**10),10)
    assert NS('log(1+1/10**50)',20) == '1.0000000000000000000e-50'
    assert NS('log(10**100,10)',10) == '100.0000000'
    assert NS('log(2)',10) == '0.6931471806'
    assert NS('(sin(x)-x)/x**3', 15, subs={x:'1/10**50'}) == '-0.166666666666667'
    assert NS(sin(1)+Rational(1,10**100)*I,15) == '0.841470984807897 + 1.00000000000000e-100*I'
    assert x.evalf() == x
    assert NS((1+I)**2*I, 6) == '-2.00000'
    d={n: (-1)**Rational(6,7), y: (-1)**Rational(4,7), x: (-1)**Rational(2,7)}
    assert NS((x*(1+y*(1 + n))).subs(d).evalf(),6) == '0.346011 + 0.433884*I'
    assert NS(((-I-sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
    assert NS((1+I)**2*I,15) == '-2.00000000000000'
    #1659 (1/2):
    assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
    #1659 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
              subs={n:.01}) == '19.8100000000000'
    assert NS(((x - 1)*((1 - x))**1000).n()) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)'
    assert NS((-x).n()) == '-x'
    assert NS((-2*x).n()) == '-2.00000000000000*x'
    assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
Esempio n. 17
0
def test_Float():
    # NOTE dps is the whole number of decimal digits
    assert str(Float("1.23", dps=1 + 2)) == "1.23"
    assert str(Float("1.23456789", dps=1 + 8)) == "1.23456789"
    assert str(Float("1.234567890123456789",
                     dps=1 + 18)) == "1.234567890123456789"
    assert str(pi.evalf(1 + 2)) == "3.14"
    assert str(pi.evalf(1 + 14)) == "3.14159265358979"
    assert str(pi.evalf(1 + 64)) == ("3.141592653589793238462643383279"
                                     "5028841971693993751058209749445923")
    assert str(pi.round(-1)) == "0.0"
    assert str((pi**400 - (pi**400).round(1)).n(2)) == "-0.e+88"
    assert sstr(Float("100"), full_prec=False, min=-2, max=2) == "1.0e+2"
    assert sstr(Float("100"), full_prec=False, min=-2, max=3) == "100.0"
    assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == "0.1"
    assert sstr(Float("0.099"), min=-2, max=3) == "9.90000000000000e-2"
Esempio n. 18
0
def circuit_from_qasm(qasm):
    """Creates a QCircuit from a QASM circuit, uses Qiskit transpiler
    to unroll the QASM circuit into basic U gates.

    Args:
        qasm (str): a QASM circuit

    Returns:
        QCircuit: the QCircuit equivalent of the provided QASM circuit
    """

    pm = PassManager()
    pm.append(Unroller(['u3', 'cx']))
    qasm = transpile(QuantumCircuit.from_qasm_str(qasm), pass_manager=pm).qasm()
    q_circuit = QCircuit()
    lines = list(qasm.split(';\n'))
    for line in lines:
        if line.startswith('qreg'):
            q_circuit.add_q_register(line.split(' ')[-1].split('[')[0], int(line.split('[')[1][:-1]))
        elif line.startswith('creg'):
            q_circuit.add_c_register(line.split(' ')[-1].split('[')[0], int(line.split('[')[1][:-1]))
        else:
            if line.startswith('u3'):
                q_reg = _q_reg_1q_qasm_gate(line)
                q_arg = (q_circuit.q_regs[q_reg[0]][0], q_reg[1])
                params = _qasm_gate_params(line)
                # print(line)
                if params[0] == pi.evalf(5)/2 and params[1] == 0 and params[2] == pi.evalf(5):
                    # print('H')
                    q_circuit.h(q_arg)
                else:
                    q_circuit.dummy_gate(name='u3', q_args=[q_arg], params=params)
            elif line.startswith('cx'):
                q_regs = _q_regs_2q_qasm_gate(line)
                q_circuit.cx((q_circuit.q_regs[q_regs[0][0]][0], q_regs[0][1]),
                             (q_circuit.q_regs[q_regs[1][0]][0], q_regs[1][1]))
            elif line.startswith('measure'):
                q_reg = line.split(' ')[1]
                c_reg = line.split(' ')[3]
                q_circuit.measure((q_circuit.q_regs[q_reg.split('[')[0]][0], int(q_reg.split('[')[-1][:-1])),
                                  (q_circuit.c_regs[c_reg.split('[')[0]][0], int(c_reg.split('[')[-1][:-1])))
            elif line.startswith('barrier'):
                q_args = list()
                for q_arg in line.split(' ')[-1].split(','):
                    q_args.append((q_circuit.q_regs[q_arg.split('[')[0]][0], int(q_arg.split('[')[-1][:-1])))
                q_circuit.barrier(*q_args)
    return q_circuit
Esempio n. 19
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
    assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
    assert NS('log(1+1/10**50)', 20) == '1.0000000000000000000e-50'
    assert NS('log(10**100,10)', 10) == '100.0000000'
    assert NS('log(2)', 10) == '0.6931471806'
    assert NS(
        '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667'
    assert NS(sin(1) + Rational(
        1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I'
    assert x.evalf() == x
    assert NS((1 + I)**2*I, 6) == '-2.00000'
    d = {n: (
        -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)}
    assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I'
    assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
    assert NS((1 + I)**2*I, 15) == '-2.00000000000000'
    # issue 4758 (1/2):
    assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
    # issue 4758 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
              subs={n: .01}) == '19.8100000000000'
    assert NS(((x - 1)*((1 - x))**1000).n()
              ) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)'
    assert NS((-x).n()) == '-x'
    assert NS((-2*x).n()) == '-2.00000000000000*x'
    assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
    assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n()
    # issue 6660. Also NaN != mpmath.nan
    # In this order:
    # 0*nan, 0/nan, 0*inf, 0/inf
    # 0+nan, 0-nan, 0+inf, 0-inf
    # >>> n = Some Number
    # n*nan, n/nan, n*inf, n/inf
    # n+nan, n-nan, n+inf, n-inf
    assert (0*sin(oo)).n() == S.Zero
    assert (0/sin(oo)).n() == S.Zero
    assert (0*E**(oo)).n() == S.NaN
    assert (0/E**(oo)).n() == S.Zero

    assert (0+sin(oo)).n() == S.NaN
    assert (0-sin(oo)).n() == S.NaN
    assert (0+E**(oo)).n() == S.Infinity
    assert (0-E**(oo)).n() == S.NegativeInfinity

    assert (5*sin(oo)).n() == S.NaN
    assert (5/sin(oo)).n() == S.NaN
    assert (5*E**(oo)).n() == S.Infinity
    assert (5/E**(oo)).n() == S.Zero

    assert (5+sin(oo)).n() == S.NaN
    assert (5-sin(oo)).n() == S.NaN
    assert (5+E**(oo)).n() == S.Infinity
    assert (5-E**(oo)).n() == S.NegativeInfinity

    #issue 7416
    assert as_mpmath(0.0, 10, {'chop': True}) == 0
Esempio n. 20
0
def test_angle_between():
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
                                  Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
    assert Line(a, o).angle_between(Line(b, o)) == pi / 2
    assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
                                Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))), acos(sqrt(3) / 3)
Esempio n. 21
0
def test_issue1512():
    assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
    assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
    assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
    assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
    assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
    x = Symbol("x")
    assert (pi+x).evalf() == pi.evalf()+x
    assert (E+x).evalf() == E.evalf()+x
    assert (Catalan+x).evalf() == Catalan.evalf()+x
    assert (EulerGamma+x).evalf() == EulerGamma.evalf()+x
    assert (GoldenRatio+x).evalf() == GoldenRatio.evalf()+x
Esempio n. 22
0
def test_issue_4611():
    assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
    assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
    assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
    assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
    assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
    x = Symbol("x")
    assert (pi + x).evalf() == pi.evalf() + x
    assert (E + x).evalf() == E.evalf() + x
    assert (Catalan + x).evalf() == Catalan.evalf() + x
    assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x
    assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x
Esempio n. 23
0
def multiply_vector(expr, n0, horner=False):
    """
    Multiply the vector n0 into the expression expr

    It is recommended to make the vector noncommutative (Symbol("n0",
    commutative=False).

    This makes assumptions that the form of expr will be one of the ones
    generated by this file.

    To apply the horner scheme to the numerator and denominator, use horner=True.
    """
    # Make sure we are using a version of SymPy that has
    # https://github.com/sympy/sympy/pull/12088.
    x, y = symbols('x y')
    if Poly(pi.evalf(100)*x*y, x).as_expr() != pi.evalf(100)*x*y:
        raise RuntimeError("multiply_vector requires https://github.com/sympy/sympy/pull/12088")

    from sympy import horner as _horner
    if horner:
        # horner doesn't work on noncommutatives
        n1 = Symbol(n0.name)
        num, den = fraction(expr)
        return _horner(num*n1).subs(n1, n0)/_horner(den)

    # TODO: Don't distribute across complex numbers
    if expr.is_Add:
        if expr.is_number:
            return expr*n0
        # expand_mul(deep=False) does too much (it breaks horner)
        return Add(*[multiply_vector(i, n0) for i in expr.args])

    coeff, rest = expr.as_coeff_Mul()
    if isinstance(rest, customre):
        return coeff*customre(multiply_vector(rest.args[0], n0))

    num, den = fraction(expr)
    if expr != num:
        return multiply_vector(num, n0)/den
    return expr*n0
Esempio n. 24
0
def test_fcode_NumberSymbol():
    prec = 17
    p = FCodePrinter()
    assert fcode(Catalan) == '      parameter (Catalan = %sd0)\n      Catalan' % Catalan.evalf(prec)
    assert fcode(EulerGamma) == '      parameter (EulerGamma = %sd0)\n      EulerGamma' % EulerGamma.evalf(prec)
    assert fcode(E) == '      parameter (E = %sd0)\n      E' % E.evalf(prec)
    assert fcode(GoldenRatio) == '      parameter (GoldenRatio = %sd0)\n      GoldenRatio' % GoldenRatio.evalf(prec)
    assert fcode(pi) == '      parameter (pi = %sd0)\n      pi' % pi.evalf(prec)
    assert fcode(
        pi, precision=5) == '      parameter (pi = %sd0)\n      pi' % pi.evalf(5)
    assert fcode(Catalan, human=False) == (set(
        [(Catalan, p._print(Catalan.evalf(prec)))]), set([]), '      Catalan')
    assert fcode(EulerGamma, human=False) == (set([(EulerGamma, p._print(
        EulerGamma.evalf(prec)))]), set([]), '      EulerGamma')
    assert fcode(E, human=False) == (
        set([(E, p._print(E.evalf(prec)))]), set([]), '      E')
    assert fcode(GoldenRatio, human=False) == (set([(GoldenRatio, p._print(
        GoldenRatio.evalf(prec)))]), set([]), '      GoldenRatio')
    assert fcode(pi, human=False) == (
        set([(pi, p._print(pi.evalf(prec)))]), set([]), '      pi')
    assert fcode(pi, precision=5, human=False) == (
        set([(pi, p._print(pi.evalf(5)))]), set([]), '      pi')
Esempio n. 25
0
def test_fcode_NumberSymbol():
    prec = 17
    p = FCodePrinter()
    assert fcode(Catalan) == '      parameter (Catalan = %sd0)\n      Catalan' % Catalan.evalf(prec)
    assert fcode(EulerGamma) == '      parameter (EulerGamma = %sd0)\n      EulerGamma' % EulerGamma.evalf(prec)
    assert fcode(E) == '      parameter (E = %sd0)\n      E' % E.evalf(prec)
    assert fcode(GoldenRatio) == '      parameter (GoldenRatio = %sd0)\n      GoldenRatio' % GoldenRatio.evalf(prec)
    assert fcode(pi) == '      parameter (pi = %sd0)\n      pi' % pi.evalf(prec)
    assert fcode(
        pi, precision=5) == '      parameter (pi = %sd0)\n      pi' % pi.evalf(5)
    assert fcode(Catalan, human=False) == (set(
        [(Catalan, p._print(Catalan.evalf(prec)))]), set([]), '      Catalan')
    assert fcode(EulerGamma, human=False) == (set([(EulerGamma, p._print(
        EulerGamma.evalf(prec)))]), set([]), '      EulerGamma')
    assert fcode(E, human=False) == (
        set([(E, p._print(E.evalf(prec)))]), set([]), '      E')
    assert fcode(GoldenRatio, human=False) == (set([(GoldenRatio, p._print(
        GoldenRatio.evalf(prec)))]), set([]), '      GoldenRatio')
    assert fcode(pi, human=False) == (
        set([(pi, p._print(pi.evalf(prec)))]), set([]), '      pi')
    assert fcode(pi, precision=5, human=False) == (
        set([(pi, p._print(pi.evalf(5)))]), set([]), '      pi')
Esempio n. 26
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10 ** 10), 10) == NS(sin(1), 10)
    assert NS(exp(10 ** 10) + sin(1), 10) == NS(exp(10 ** 10), 10)
    assert NS("log(1+1/10**50)", 20) == "1.0000000000000000000e-50"
    assert NS("log(10**100,10)", 10) == "100.0000000"
    assert NS("log(2)", 10) == "0.6931471806"
    assert NS("(sin(x)-x)/x**3", 15, subs={x: "1/10**50"}) == "-0.166666666666667"
    assert NS(sin(1) + Rational(1, 10 ** 100) * I, 15) == "0.841470984807897 + 1.00000000000000e-100*I"
    assert x.evalf() == x
    assert NS((1 + I) ** 2 * I, 6) == "-2.00000"
    d = {n: (-1) ** Rational(6, 7), y: (-1) ** Rational(4, 7), x: (-1) ** Rational(2, 7)}
    assert NS((x * (1 + y * (1 + n))).subs(d).evalf(), 6) == "0.346011 + 0.433884*I"
    assert NS(((-I - sqrt(2) * I) ** 2).evalf()) == "-5.82842712474619"
    assert NS((1 + I) ** 2 * I, 15) == "-2.00000000000000"
    # 1659 (1/2):
    assert NS(pi.evalf(69) - pi) == "-4.43863937855894e-71"
    # 1659 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844 * n ** 25 - 477638700 * n ** 37 - 19 * n, subs={n: 0.01}) == "19.8100000000000"
    assert NS(((x - 1) * ((1 - x)) ** 1000).n()) == "(-x + 1.00000000000000)**1000*(x - 1.00000000000000)"
    assert NS((-x).n()) == "-x"
    assert NS((-2 * x).n()) == "-2.00000000000000*x"
    assert NS((-2 * x * y).n()) == "-2.00000000000000*x*y"
    assert cos(x).n(subs={x: 1 + I}) == cos(x).subs(x, 1 + I).n()
    # 3561. Also NaN != mpmath.nan
    # In this order:
    # 0*nan, 0/nan, 0*inf, 0/inf
    # 0+nan, 0-nan, 0+inf, 0-inf
    # >>> n = Some Number
    # n*nan, n/nan, n*inf, n/inf
    # n+nan, n-nan, n+inf, n-inf
    assert (0 * sin(oo)).n() == S.Zero
    assert (0 / sin(oo)).n() == S.Zero
    assert (0 * E ** (oo)).n() == S.NaN
    assert (0 / E ** (oo)).n() == S.Zero

    assert (0 + sin(oo)).n() == S.NaN
    assert (0 - sin(oo)).n() == S.NaN
    assert (0 + E ** (oo)).n() == S.Infinity
    assert (0 - E ** (oo)).n() == S.NegativeInfinity

    assert (5 * sin(oo)).n() == S.NaN
    assert (5 / sin(oo)).n() == S.NaN
    assert (5 * E ** (oo)).n() == S.Infinity
    assert (5 / E ** (oo)).n() == S.Zero

    assert (5 + sin(oo)).n() == S.NaN
    assert (5 - sin(oo)).n() == S.NaN
    assert (5 + E ** (oo)).n() == S.Infinity
    assert (5 - E ** (oo)).n() == S.NegativeInfinity
Esempio n. 27
0
def test_inline_function():
    x = symbols('x')
    g = implemented_function('g', Lambda(x, 2 * x))
    assert fcode(g(x)) == "      2*x"
    g = implemented_function('g', Lambda(x, 2 * pi / x))
    assert fcode(g(x)) == ("      parameter (pi = %sd0)\n"
                           "      2*pi/x") % pi.evalf(17)
    A = IndexedBase('A')
    i = Idx('i', symbols('n', integer=True))
    g = implemented_function('g', Lambda(x, x * (1 + x) * (2 + x)))
    assert fcode(
        g(A[i]),
        assign_to=A[i]) == ("      do i = 1, n\n"
                            "         A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
                            "      end do")
Esempio n. 28
0
def test_inline_function():
    x = symbols('x')
    g = implemented_function('g', Lambda(x, 2*x))
    assert fcode(g(x)) == "      2*x"
    g = implemented_function('g', Lambda(x, 2*pi/x))
    assert fcode(g(x)) == (
        "      parameter (pi = %sd0)\n"
        "      2*pi/x"
    ) % pi.evalf(17)
    A = IndexedBase('A')
    i = Idx('i', symbols('n', integer=True))
    g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
    assert fcode(g(A[i]), assign_to=A[i]) == (
        "      do i = 1, n\n"
        "         A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
        "      end do"
    )
Esempio n. 29
0
def test_nsolve():
    # onedimensional
    from sympy import Symbol, sin, pi
    x = Symbol('x')
    assert nsolve(sin(x), 2) - pi.evalf() < 1e-16
    assert nsolve(Eq(2 * x, 2), x, -10) == nsolve(2 * x - 2, -10)
    # Testing checks on number of inputs
    raises(TypeError, "nsolve(Eq(2*x,2))")
    raises(TypeError, "nsolve(Eq(2*x,2),x,1,2)")
    # Issue 1730
    assert nsolve(x**2 / (1 - x) / (1 - 2 * x)**2 - 100, x, 0)  # doesn't fail
    # multidimensional
    x1 = Symbol('x1')
    x2 = Symbol('x2')
    f1 = 3 * x1**2 - 2 * x2**2 - 1
    f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
    f = Matrix((f1, f2)).T
    F = lambdify((x1, x2), f.T, modules='mpmath')
    for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
        x = nsolve(f, (x1, x2), x0, tol=1.e-8)
        assert mnorm(F(*x), 1) <= 1.e-10
    # The Chinese mathematician Zhu Shijie was the very first to solve this
    # nonlinear system 700 years ago (z was added to make it 3-dimensional)
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = -x + 2 * y
    f2 = (x**2 + x * (y**2 - 2) - 4 * y) / (x + 4)
    f3 = sqrt(x**2 + y**2) * z
    f = Matrix((f1, f2, f3)).T
    F = lambdify((x, y, z), f.T, modules='mpmath')

    def getroot(x0):
        root = nsolve((f1, f2, f3), (x, y, z), x0)
        assert mnorm(F(*root), 1) <= 1.e-8
        return root

    assert map(round, getroot((1, 1, 1))) == [2.0, 1.0, 0.0]
    assert nsolve([Eq(f1), Eq(f2), Eq(f3)], [x, y, z],
                  (1, 1, 1))  # just see that it works
    a = Symbol('a')
    assert nsolve(1 / (0.001 + a)**3 - 6 / (0.9 - a)**3, a,
                  0.3).ae(mpf('0.31883011387318591'))
Esempio n. 30
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10 ** 10), 10) == NS(sin(1), 10)
    assert NS(exp(10 ** 10) + sin(1), 10) == NS(exp(10 ** 10), 10)
    assert NS("log(1+1/10**50)", 20) == "1.0000000000000000000e-50"
    assert NS("log(10**100,10)", 10) == "100.0000000"
    assert NS("log(2)", 10) == "0.6931471806"
    assert NS("(sin(x)-x)/x**3", 15, subs={x: "1/10**50"}) == "-0.166666666666667"
    assert NS(sin(1) + Rational(1, 10 ** 100) * I, 15) == "0.841470984807897 + 1.00000000000000e-100*I"
    assert x.evalf() == x
    assert NS((1 + I) ** 2 * I, 6) == "-2.00000 + 2.32831e-10*I"
    d = {n: (-1) ** Rational(6, 7), y: (-1) ** Rational(4, 7), x: (-1) ** Rational(2, 7)}
    assert NS((x * (1 + y * (1 + n))).subs(d).evalf(), 6) == "0.346011 + 0.433884*I"
    assert NS(((-I - sqrt(2) * I) ** 2).evalf()) == "-5.82842712474619"
    assert NS((1 + I) ** 2 * I, 15) == "-2.00000000000000 + 2.16840434497101e-19*I"
    # 1659 (1/2):
    assert NS(pi.evalf(69) - pi) == "-4.43863937855894e-71"
    # 1659 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844 * n ** 25 - 477638700 * n ** 37 - 19 * n, subs={n: 0.01}) == "19.8100000000000"
Esempio n. 31
0
def test_nsolve():
    # onedimensional
    x = Symbol('x')
    assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
    assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
    # Testing checks on number of inputs
    raises(TypeError, lambda: nsolve(Eq(2*x, 2)))
    raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2))
    # issue 4829
    assert nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0)  # doesn't fail
    # multidimensional
    x1 = Symbol('x1')
    x2 = Symbol('x2')
    f1 = 3 * x1**2 - 2 * x2**2 - 1
    f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
    f = Matrix((f1, f2)).T
    F = lambdify((x1, x2), f.T, modules='mpmath')
    for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
        x = nsolve(f, (x1, x2), x0, tol=1.e-8)
        assert mnorm(F(*x), 1) <= 1.e-10
    # The Chinese mathematician Zhu Shijie was the very first to solve this
    # nonlinear system 700 years ago (z was added to make it 3-dimensional)
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = -x + 2*y
    f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
    f3 = sqrt(x**2 + y**2)*z
    f = Matrix((f1, f2, f3)).T
    F = lambdify((x, y, z), f.T, modules='mpmath')

    def getroot(x0):
        root = nsolve(f, (x, y, z), x0)
        assert mnorm(F(*root), 1) <= 1.e-8
        return root
    assert list(map(round, getroot((1, 1, 1)))) == [2.0, 1.0, 0.0]
    assert nsolve([Eq(
        f1), Eq(f2), Eq(f3)], [x, y, z], (1, 1, 1))  # just see that it works
    a = Symbol('a')
    assert nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3).ae(
        mpf('0.31883011387318591'))
Esempio n. 32
0
def test_nsolve():
    # onedimensional
    x = Symbol("x")
    assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
    assert nsolve(Eq(2 * x, 2), x, -10) == nsolve(2 * x - 2, -10)
    # Testing checks on number of inputs
    raises(TypeError, lambda: nsolve(Eq(2 * x, 2)))
    raises(TypeError, lambda: nsolve(Eq(2 * x, 2), x, 1, 2))
    # multidimensional
    x1 = Symbol("x1")
    x2 = Symbol("x2")
    f1 = 3 * x1**2 - 2 * x2**2 - 1
    f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
    f = Matrix((f1, f2)).T
    F = lambdify((x1, x2), f.T, modules="mpmath")
    for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
        x = nsolve(f, (x1, x2), x0, tol=1.0e-8)
        assert mnorm(F(*x), 1) <= 1.0e-10
    # The Chinese mathematician Zhu Shijie was the very first to solve this
    # nonlinear system 700 years ago (z was added to make it 3-dimensional)
    x = Symbol("x")
    y = Symbol("y")
    z = Symbol("z")
    f1 = -x + 2 * y
    f2 = (x**2 + x * (y**2 - 2) - 4 * y) / (x + 4)
    f3 = sqrt(x**2 + y**2) * z
    f = Matrix((f1, f2, f3)).T
    F = lambdify((x, y, z), f.T, modules="mpmath")

    def getroot(x0):
        root = nsolve(f, (x, y, z), x0)
        assert mnorm(F(*root), 1) <= 1.0e-8
        return root

    assert list(map(round, getroot((1, 1, 1)))) == [2.0, 1.0, 0.0]
    assert nsolve([Eq(f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z],
                  (1, 1, 1))  # just see that it works
    a = Symbol("a")
    assert (abs(
        nsolve(1 / (0.001 + a)**3 - 6 /
               (0.9 - a)**3, a, 0.3) - mpf("0.31883011387318591")) < 1e-15)
Esempio n. 33
0
def get_test_program(measure: bool = False) -> Program:
    PI = float(pi.evalf())
    p = Program()
    p += X(0)
    p += Y(1)
    p += Z(2)
    p += H(3)
    p += S(0)
    p += T(1)
    p += RX(PI / 2, 2)
    p += RY(PI / 2, 3)
    p += RZ(PI / 2, 0)
    p += CZ(0, 1)
    p += CNOT(2, 3)
    p += CCNOT(0, 1, 2)
    p += CPHASE(PI / 4, 2, 1)
    p += SWAP(0, 3)
    if measure:
        ro = p.declare("ro", "BIT", 4)
        p += MEASURE(0, ro[0])
        p += MEASURE(3, ro[1])
        p += MEASURE(2, ro[2])
        p += MEASURE(1, ro[3])
    return p
Esempio n. 34
0
def test_evalf_arguments():
    raises(TypeError, lambda: pi.evalf(method="garbage"))
Esempio n. 35
0
def test_issue_8821_highprec_from_str():
    s = str(pi.evalf(128))
    p = N(s)
    assert Abs(sin(p)) < 1e-15
    p = N(s, 64)
    assert Abs(sin(p)) < 1e-64
Esempio n. 36
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14),
                               Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    warnings.filterwarnings(
        "error", message="Polygons may intersect producing erroneous output")
    raises(
        UserWarning,
        lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
            Polygon(Point(0, 0), Point(0, 1), Point(1, 1))))
    warnings.filterwarnings(
        "ignore", message="Polygons may intersect producing erroneous output")
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(
        ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).
        arbitrary_point('x'))

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError,
           lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1.vertices[0] == Point(5, 5 * sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5))
    assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1**2 / (
        (2 + sqrt(2)) * Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S(
        '''Point(-780660869050599840216997'''
        '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
        '''20151573611150265741278060334545897615974257/16073686192120448448157'''
        '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    # First, test the warning
    warnings.filterwarnings(
        "error", message="Polygons may intersect producing erroneous output")
    raises(UserWarning, lambda: p1.distance(p2))
    # now test the actual output
    warnings.filterwarnings(
        "ignore", message="Polygons may intersect producing erroneous output")
    assert p1.distance(p2) == half / 2

    assert p1.distance(p3) == sqrt(2) / 2
    assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2)
Esempio n. 37
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
    assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
    assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
    assert nsimplify(exp(5*pi*I/3, evaluate=False)) == \
        sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(3*pi/5, evaluate=False)) == \
        sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
        sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
        2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == Rational(1, 2) + x
    assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
        sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
        -pi/4 - log(2) + S(7)/4
    assert nsimplify(x/7.0) == x/7
    assert nsimplify(pi/1e2) == pi/100
    assert nsimplify(pi/1e2, rational=False) == pi/100.0
    assert nsimplify(pi/1e-7) == 10000000*pi
    assert not nsimplify(
        factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
    e = x**0.0
    assert e.is_Pow and nsimplify(x**0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == -S(2031)/10
    assert nsimplify(.2, tolerance=0) == S.One/5
    assert nsimplify(-.2, tolerance=0) == -S.One/5
    assert nsimplify(.2222, tolerance=0) == S(1111)/5000
    assert nsimplify(-.2222, tolerance=0) == -S(1111)/5000
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == S(1)/50000000
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float('inf')
    infs = (-oo, oo, inf, -inf)
    for i in infs:
        ans = sign(i)*oo
        assert nsimplify(i) == ans
        assert nsimplify(i + x) == x + ans

    assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)

    # Make sure nsimplify on expressions uses full precision
    assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x
Esempio n. 38
0
def test_evalf_bugs():
    assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
    assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
    assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50'
    assert NS('log(10**100,10)', 10) == '100.0000000'
    assert NS('log(2)', 10) == '0.6931471806'
    assert NS('(sin(x)-x)/x**3', 15, subs={x:
                                           '1/10**50'}) == '-0.166666666666667'
    assert NS(sin(1) + Rational(1, 10**100) * I,
              15) == '0.841470984807897 + 1.00000000000000e-100*I'
    assert x.evalf() == x
    assert NS((1 + I)**2 * I, 6) == '-2.00000'
    d = {
        n: (-1)**Rational(6, 7),
        y: (-1)**Rational(4, 7),
        x: (-1)**Rational(2, 7)
    }
    assert NS((x * (1 + y * (1 + n))).subs(d).evalf(),
              6) == '0.346011 + 0.433884*I'
    assert NS(((-I - sqrt(2) * I)**2).evalf()) == '-5.82842712474619'
    assert NS((1 + I)**2 * I, 15) == '-2.00000000000000'
    # issue 4758 (1/2):
    assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
    # issue 4758 (2/2): With the bug present, this still only fails if the
    # terms are in the order given here. This is not generally the case,
    # because the order depends on the hashes of the terms.
    assert NS(20 - 5008329267844 * n**25 - 477638700 * n**37 - 19 * n,
              subs={n: .01}) == '19.8100000000000'
    assert NS(
        ((x - 1) * ((1 - x))**
         1000).n()) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)'
    assert NS((-x).n()) == '-x'
    assert NS((-2 * x).n()) == '-2.00000000000000*x'
    assert NS((-2 * x * y).n()) == '-2.00000000000000*x*y'
    assert cos(x).n(subs={x: 1 + I}) == cos(x).subs(x, 1 + I).n()
    # issue 6660. Also NaN != mpmath.nan
    # In this order:
    # 0*nan, 0/nan, 0*inf, 0/inf
    # 0+nan, 0-nan, 0+inf, 0-inf
    # >>> n = Some Number
    # n*nan, n/nan, n*inf, n/inf
    # n+nan, n-nan, n+inf, n-inf
    assert (0 * E**(oo)).n() == S.NaN
    assert (0 / E**(oo)).n() == S.Zero

    assert (0 + E**(oo)).n() == S.Infinity
    assert (0 - E**(oo)).n() == S.NegativeInfinity

    assert (5 * E**(oo)).n() == S.Infinity
    assert (5 / E**(oo)).n() == S.Zero

    assert (5 + E**(oo)).n() == S.Infinity
    assert (5 - E**(oo)).n() == S.NegativeInfinity

    #issue 7416
    assert as_mpmath(0.0, 10, {'chop': True}) == 0

    #issue 5412
    assert ((oo * I).n() == S.Infinity * I)
    assert ((oo + oo * I).n() == S.Infinity + S.Infinity * I)

    #issue 11518
    assert NS(2 * x**2.5, 5) == '2.0000*x**2.5000'

    #issue 13076
    assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)'
Esempio n. 39
0
def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5)) / 2
    assert nsimplify((1 + sqrt(5)) / 4, [GoldenRatio]) == GoldenRatio / 2
    assert nsimplify(2 / GoldenRatio, [GoldenRatio]) == 2 * GoldenRatio - 2
    assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \
        sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \
        sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
        sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2 * atan('1/4') * I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1 / 3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
        2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == S.Half + x
    assert nsimplify(1 / .3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
        sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi * log(2) / 8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
        -pi/4 - log(2) + Rational(7, 4)
    assert nsimplify(x / 7.0) == x / 7
    assert nsimplify(pi / 1e2) == pi / 100
    assert nsimplify(pi / 1e2, rational=False) == pi / 100.0
    assert nsimplify(pi / 1e-7) == 10000000 * pi
    assert not nsimplify(
        factor(-3.0 * z**2 * (z**2)**(-2.5) + 3 * (z**2)**(-1.5))).atoms(Float)
    e = x**0.0
    assert e.is_Pow and nsimplify(x**0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01,
                     rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01,
                     rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == Rational(-2031, 10)
    assert nsimplify(.2, tolerance=0) == Rational(1, 5)
    assert nsimplify(-.2, tolerance=0) == Rational(-1, 5)
    assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000)
    assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000)
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == Rational(1, 50000000)
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float('inf')
    infs = (-oo, oo, inf, -inf)
    for i in infs:
        ans = sign(i) * oo
        assert nsimplify(i) == ans
        assert nsimplify(i + x) == x + ans

    assert nsimplify(0.33333333, rational=True,
                     rational_conversion='exact') == Rational(0.33333333)

    # Make sure nsimplify on expressions uses full precision
    assert nsimplify(
        pi.evalf(100) * x,
        rational_conversion='exact').evalf(100) == pi.evalf(100) * x
Esempio n. 40
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex()  # ensure convex for both CW and CCW point specification

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p1.is_convex()

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    s2 = t2.sides
    s3 = t3.sides

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == 5 * sqrt(3) / 6
    assert t3.inradius == x1 ** 2 / ((2 + sqrt(2)) * Abs(x1))

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)
    )
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5))
    p5 = Polygon(
        Point(half, 3 ** (half) / 2),
        Point(-half, 3 ** (half) / 2),
        Point(-1, 0),
        Point(-half, -(3) ** (half) / 2),
        Point(half, -(3) ** (half) / 2),
        Point(1, 0),
    )
    p6 = Polygon(
        Point(2, Rational(3) / 10),
        Point(Rational(17) / 10, 0),
        Point(2, -Rational(3) / 10),
        Point(Rational(23) / 10, 0),
    )
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    """Polygon to Point"""
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2

    """Polygon to Polygon"""
    import warnings

    # p1.distance(p2) emits a warning
    # First, test the warning
    warnings.filterwarnings("error", "Polygons may intersect producing erroneous output")
    raises(UserWarning, "p1.distance(p2)")
    # now test the actual output
    warnings.filterwarnings("ignore", "Polygons may intersect producing erroneous output")
    assert p1.distance(p2) == half / 2
    # Keep testing reasonably thread safe, so reset the warning
    warnings.filterwarnings("default", "Polygons may intersect producing erroneous output")
    # Note, in Python 2.6+, this can be done more nicely using the
    # warnings.catch_warnings context manager.
    # See http://docs.python.org/library/warnings#testing-warnings.

    assert p1.distance(p3) == sqrt(2) / 2
    assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2)
    assert p5.distance(p6) == Rational(7) / 10
Esempio n. 41
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex()  # ensure convex for both CW and CCW point specification
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) == None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) == False
    assert p5.encloses_point(Point(4, 0)) == False
    p5.plot_interval("x") == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    raises(
        UserWarning,
        lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1))),
    )
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point("t").subs(Symbol("t", real=True), 0) == Point(0, 0)
    raises(ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point("x"))

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) == False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1.vertices[0] == Point(5, 5 * sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5))
    assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8)
    assert p1.scale(2, 2) == RegularPolygon(p1.center, p1.radius * 2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert ` p1 ` == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False
    assert t1.is_similar(Point(0, 0)) == False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1 ** 2 / ((2 + sqrt(2)) * Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S(
        """Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))"""
    )
    assert t.orthocenter == S(
        """Point(-780660869050599840216997"""
        """79471538701955848721853/80368430960602242240789074233100000000000000,"""
        """20151573611150265741278060334545897615974257/16073686192120448448157"""
        """8148466200000000000)"""
    )

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)
    )
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    """Polygon to Point"""
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
Esempio n. 42
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1 # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x-y, y-x)
    assert simplify(l3.equation()) in (x-x1, x1-x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1 , l2) == False

    # Parallelity
    p2_1 = Point(-2*x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1,2), Rational(1,2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10,10), Point(10,10))
    entity2 = Segment(Point(-5,-5), Point(-5,5))
    assert intersection(entity1, entity2) == []
Esempio n. 43
0
def test_Float_default_to_highprec_from_str():
    s = str(pi.evalf(128))
    assert same_and_same_prec(Float(s), Float(s, ''))
Esempio n. 44
0
def test_polygon():
    p1 = Polygon(
        Point(0, 0), Point(3,-1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3,-1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1) == Rational(6)
    assert len(p1.sides) == 6
    assert p1.perimeter == 5+2*sqrt(10)+sqrt(29)+sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex()  # ensure convex for both CW and CCW point specification

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)

    assert p1 != p2
    assert p1.interior_angle == 3*pi/5
    assert p1.exterior_angle == 2*pi/5
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p1.is_convex()

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5,2), sqrt(Rational(75,4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    s2 = t2.sides
    s3 = t3.sides

    # Basic stuff
    assert t1.area == Rational(25,2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False

    # Bisectors
    bisectors = t1.bisectors
    assert bisectors[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    ic = (250 - 125*sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == 5 - 5*2**(S(1)/2)/2
    assert t2.inradius == 5*3**(S(1)/2)/6
    assert t3.inradius == (2*x1**2*Abs(x1) - 2**(S(1)/2)*x1**2*Abs(x1))/(2*x1**2)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5,3), Rational(5,3))
    assert m[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0,  Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    p5 = Polygon(
        Point(half, 3**(half)/2), Point(-half, 3**(half)/2),
        Point(-1, 0), Point(-half, -(3)**(half)/2),
        Point(half, -(3)**(half)/2), Point(1, 0))
    p6 = Polygon(Point(2, Rational(3)/10), Point(Rational(17)/10, 0),
                 Point(2, -Rational(3)/10), Point(Rational(23)/10, 0))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2

    '''Polygon to Polygon'''
    assert p1.distance(p2) == half/2
    assert p1.distance(p3) == sqrt(2)/2
    assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
    assert p5.distance(p6) == Rational(7)/10
Esempio n. 45
0
def test_mpmath_precision():
    mpmath.mp.dps = 100
    assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
Esempio n. 46
0
def test_issue_8821_highprec_from_str():
    s = str(pi.evalf(128))
    p = N(s)
    assert Abs(sin(p)) < 1e-15
    p = N(s, 64)
    assert Abs(sin(p)) < 1e-64
Esempio n. 47
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, 'Line(Point(0, 0), Point(0, 0))')

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, 'Line((1, 1), 1)')
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(
        GeometryError,
        'Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1))')

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray(
        (1, 1),
        angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2,
                                                       1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, 'Ray((1, 1), 1)')

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray(
        (1, 1),
        angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b')
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, "Point(2*a, 0) in s")

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
Esempio n. 48
0
def test_polygon():
    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1) == Rational(6)
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex(
    )  # ensure convex for both CW and CCW point specification

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p1.is_convex()

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    s2 = t2.sides
    s3 = t3.sides

    # Basic stuff
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False

    # Bisectors
    bisectors = t1.bisectors
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == 5 - 5 * 2**(S(1) / 2) / 2
    assert t2.inradius == 5 * 3**(S(1) / 2) / 6
    assert t3.inradius == (2 * x1**2 * Abs(x1) -
                           2**(S(1) / 2) * x1**2 * Abs(x1)) / (2 * x1**2)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    p5 = Polygon(Point(half, 3**(half) / 2), Point(-half, 3**(half) / 2),
                 Point(-1, 0), Point(-half, -(3)**(half) / 2),
                 Point(half, -(3)**(half) / 2), Point(1, 0))
    p6 = Polygon(Point(2,
                       Rational(3) / 10), Point(Rational(17) / 10, 0),
                 Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
    '''Polygon to Polygon'''
    assert p1.distance(p2) == half / 2
    assert p1.distance(p3) == sqrt(2) / 2
    assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2)
    assert p5.distance(p6) == Rational(7) / 10
Esempio n. 49
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex(
    )  # ensure convex for both CW and CCW point specification
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) == None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) == False
    assert p5.encloses_point(Point(4, 0)) == False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14),
                               Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    raises(
        UserWarning,
        'Polygon(Point(0, 0), Point(1, 0), Point(1,1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))'
    )
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True),
                                        0) == Point(0, 0)
    raises(
        ValueError,
        "Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')")

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError,
           'RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))')
    raises(GeometryError, 'RegularPolygon(Point(0, 0), 1, 2)')

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) == False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1[0] == Point(5, 5 * sqrt(3))
    for var in p1:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5
    raises(IndexError, 'RegularPolygon(Point(0, 0), 1, 3)[4]')

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert ` p1 ` == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, 'Triangle(Point(0, 0))')

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False
    assert t1.is_similar(Point(0, 0)) == False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1**2 / (
        (2 + sqrt(2)) * Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
Esempio n. 50
0
def test_issue_8821_highprec_from_str():
    s = str(pi.evalf(128))
    p = sympify(s)
    assert Abs(sin(p)) < 1e-127
Esempio n. 51
0
#!/usr/bin/env python

from sympy import pi

print(pi.evalf(100))
Esempio n. 52
0
def test_issue_8821_highprec_from_str():
    s = str(pi.evalf(128))
    p = sympify(s)
    assert Abs(sin(p)) < 1e-127
Esempio n. 53
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []
Esempio n. 54
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(
        Point(0, 0), Point(3,-1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3,-1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))
    p5 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(0, 4))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5+2*sqrt(10)+sqrt(29)+sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex()  # ensure convex for both CW and CCW point specification
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) == None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) == False
    assert p5.encloses_point(Point(4, 0)) == False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    raises(UserWarning,
           'Polygon(Point(0, 0), Point(1, 0), Point(1,1)).distance(Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))')
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == Point(0, 0)
    raises(ValueError, "Polygon(Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')")

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, 'RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))')
    raises(GeometryError, 'RegularPolygon(Point(0, 0), 1, 2)')
    raises(ValueError, 'RegularPolygon(Point(0, 0), 1, 2.5)')

    assert p1 != p2
    assert p1.interior_angle == 3*pi/5
    assert p1.exterior_angle == 2*pi/5
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) == False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi/3)
    assert p1.rotation == pi/3
    assert p1.vertices[0] == Point(5, 5*sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3)
    assert p1 == p1_old

    assert `p1` == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5,2), sqrt(Rational(75,4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, 'Triangle(Point(0, 0))')

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
    assert t1.area == Rational(25,2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False
    assert t1.is_similar(Point(0, 0)) == False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    ic = (250 - 125*sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
    assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
    assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5,3), Rational(5,3))
    assert m[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5,2), Rational(5,2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0,  Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2
Esempio n. 55
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
Esempio n. 56
0
def test_polygon():
    t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3))
    assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t
    assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t
    assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))

    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert p3.is_convex()
    assert p4.is_convex(
    )  # ensure convex for both CW and CCW point specification

    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p1.is_convex()
    assert p1.rotation == 0
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1[0] == Point(5, 5 * sqrt(3))
    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() == False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() == False
    assert t2.is_equilateral()
    assert t3.is_equilateral() == False
    assert are_similar(t1, t2) == False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) == False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == 5 * sqrt(3) / 6
    assert t3.inradius == x1**2 / ((2 + sqrt(2)) * Abs(x1))

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
Esempio n. 57
0
def test_mpmath_precision():
    mpmath.mp.dps = 100
    assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
Esempio n. 58
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, "Line((1, 1), 1)")
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, "Ray((1, 1), 1)")

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s
    assert (Point(2 * a, 0) in s) is False  # XXX should be None?

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []