Esempio n. 1
0
def dup_zz_mignotte_bound(f, K):
    """Mignotte bound for univariate polynomials in `K[x]`. """
    a = dup_max_norm(f, K)
    b = abs(dup_LC(f, K))
    n = dup_degree(f)

    return K.sqrt(K(n + 1)) * 2**n * a * b
Esempio n. 2
0
def dup_zz_mignotte_bound(f, K):
    """Mignotte bound for univariate polynomials in `K[x]`. """
    a = dup_max_norm(f, K)
    b = abs(dup_LC(f, K))
    n = dup_degree(f)

    return K.sqrt(K(n+1))*2**n*a*b
Esempio n. 3
0
def dup_factor_list(f, K0):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)
    cont, f = dup_primitive(f, K0)

    if K0.is_FiniteField:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dup_max_norm(f, K0)
                    f = dup_quo_ground(f, max_norm, K0)
                    f = dup_convert(f, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff*cont, _sort_factors(factors)
Esempio n. 4
0
def dup_factor_list(f, K0):
    """Factor univariate polynomials into irreducibles in `K[x]`. """
    j, f = dup_terms_gcd(f, K0)
    cont, f = dup_primitive(f, K0)

    if K0.is_FiniteField:
        coeff, factors = dup_gf_factor(f, K0)
    elif K0.is_Algebraic:
        coeff, factors = dup_ext_factor(f, K0)
    else:
        if not K0.is_Exact:
            K0_inexact, K0 = K0, K0.get_exact()
            f = dup_convert(f, K0_inexact, K0)
        else:
            K0_inexact = None

        if K0.is_Field:
            K = K0.get_ring()

            denom, f = dup_clear_denoms(f, K0, K)
            f = dup_convert(f, K0, K)
        else:
            K = K0

        if K.is_ZZ:
            coeff, factors = dup_zz_factor(f, K)
        elif K.is_Poly:
            f, u = dmp_inject(f, 0, K)

            coeff, factors = dmp_factor_list(f, u, K.dom)

            for i, (f, k) in enumerate(factors):
                factors[i] = (dmp_eject(f, u, K), k)

            coeff = K.convert(coeff, K.dom)
        else:  # pragma: no cover
            raise DomainError('factorization not supported over %s' % K0)

        if K0.is_Field:
            for i, (f, k) in enumerate(factors):
                factors[i] = (dup_convert(f, K, K0), k)

            coeff = K0.convert(coeff, K)
            coeff = K0.quo(coeff, denom)

            if K0_inexact:
                for i, (f, k) in enumerate(factors):
                    max_norm = dup_max_norm(f, K0)
                    f = dup_quo_ground(f, max_norm, K0)
                    f = dup_convert(f, K0, K0_inexact)
                    factors[i] = (f, k)
                    coeff = K0.mul(coeff, K0.pow(max_norm, k))

                coeff = K0_inexact.convert(coeff, K0)
                K0 = K0_inexact

    if j:
        factors.insert(0, ([K0.one, K0.zero], j))

    return coeff*cont, _sort_factors(factors)
Esempio n. 5
0
def dup_zz_mignotte_bound(f, K):
    """
    The Knuth-Cohen variant of Mignotte bound for
    univariate polynomials in `K[x]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> f = x**3 + 14*x**2 + 56*x + 64
    >>> R.dup_zz_mignotte_bound(f)
    152

    By checking `factor(f)` we can see that max coeff is 8

    Also consider a case that `f` is irreducible for example `f = 2*x**2 + 3*x + 4`
    To avoid a bug for these cases, we return the bound plus the max coefficient of `f`

    >>> f = 2*x**2 + 3*x + 4
    >>> R.dup_zz_mignotte_bound(f)
    6

    Lastly,To see the difference between the new and the old Mignotte bound
    consider the irreducible polynomial::

    >>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26
    >>> R.dup_zz_mignotte_bound(f)
    744

    The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664.


    References
    ==========

    ..[1] [Abbott2013]_

    """
    from sympy import binomial

    d = dup_degree(f)
    delta = _ceil(d / 2)
    delta2 = _ceil(delta / 2)

    # euclidean-norm
    eucl_norm = K.sqrt(sum([cf**2 for cf in f]))

    # biggest values of binomial coefficients (p. 538 of reference)
    t1 = binomial(delta - 1, delta2)
    t2 = binomial(delta - 1, delta2 - 1)

    lc = K.abs(dup_LC(f, K))  # leading coefficient
    bound = t1 * eucl_norm + t2 * lc  # (p. 538 of reference)
    bound += dup_max_norm(f, K)  # add max coeff for irreducible polys
    bound = _ceil(bound / 2) * 2  # round up to even integer

    return bound
Esempio n. 6
0
def dmp_zz_wang(f, u, K, mod=None):
    """
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
    is primitive and square-free in `x_1`, computes factorization
    of `f` into irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate
    polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
    mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
    The mapping is used to transform `f` into a univariate polynomial
    in `Z[x_1]`, which can be factored efficiently using Zassenhaus
    algorithm. The last step is to lift univariate factors to obtain
    true multivariate factors. For this purpose a parallel Hensel
    lifting procedure is used.

    References
    ==========

    1. [Wang78]_
    2. [Geddes92]_

    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set([]), [], [K.zero] * u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in xrange(eez_num_tries):
            A = [K(randint(-mod, mod)) for _ in xrange(u)]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r:  # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors:  # pragma: no cover
        if query('EEZ_RESTART_IF_NEEDED'):
            return dmp_zz_wang(f, u, K, mod + 1)
        else:
            raise ExtraneousFactors(
                "we need to restart algorithm with better parameters")

    negative, result = 0, []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result
Esempio n. 7
0
def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1)) * 2**n * A * b))
    C = int((n + 1)**(2 * n) * A**(2 * n - 1))
    gamma = int(_ceil(2 * _log(C, 2)))
    bound = int(2 * gamma * _log(gamma))

    for p in xrange(3, bound + 1):
        if not isprime(p) or b % p == 0:
            continue

        p = K.convert(p)

        F = gf_from_int_poly(f, p)

        if gf_sqf_p(F, p, K):
            break

    l = int(_ceil(_log(2 * B + 1, p)))

    modular = []

    for ff in gf_factor_sqf(F, p, K)[1]:
        modular.append(gf_to_int_poly(ff, p))

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    T = set(range(len(g)))
    factors, s = [], 1

    while 2 * s <= len(T):
        for S in subsets(T, s):
            G, H = [b], [b]

            S = set(S)

            for i in S:
                G = dup_mul(G, g[i], K)
            for i in T - S:
                H = dup_mul(H, g[i], K)

            G = dup_trunc(G, p**l, K)
            H = dup_trunc(H, p**l, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm * H_norm <= B:
                T = T - S

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]
Esempio n. 8
0
def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    fc = f[-1]
    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1)) * 2**n * A * b))
    C = int((n + 1)**(2 * n) * A**(2 * n - 1))
    gamma = int(_ceil(2 * _log(C, 2)))
    bound = int(2 * gamma * _log(gamma))
    a = []
    # choose a prime number `p` such that `f` be square free in Z_p
    # if there are many factors in Z_p, choose among a few different `p`
    # the one with fewer factors
    for px in xrange(3, bound + 1):
        if not isprime(px) or b % px == 0:
            continue

        px = K.convert(px)

        F = gf_from_int_poly(f, px)

        if not gf_sqf_p(F, px, K):
            continue
        fsqfx = gf_factor_sqf(F, px, K)[1]
        a.append((px, fsqfx))
        if len(fsqfx) < 15 or len(a) > 4:
            break
    p, fsqf = min(a, key=lambda x: len(x[1]))

    l = int(_ceil(_log(2 * B + 1, p)))

    modular = [gf_to_int_poly(ff, p) for ff in fsqf]

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    sorted_T = range(len(g))
    T = set(sorted_T)
    factors, s = [], 1
    pl = p**l

    while 2 * s <= len(T):
        for S in subsets(sorted_T, s):
            # lift the constant coefficient of the product `G` of the factors
            # in the subset `S`; if it is does not divide `fc`, `G` does
            # not divide the input polynomial

            if b == 1:
                q = 1
                for i in S:
                    q = q * g[i][-1]
                q = q % pl
                if not _test_pl(fc, q, pl):
                    continue
            else:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)
                G1 = dup_primitive(G, K)[1]
                q = G1[-1]
                if q and fc % q != 0:
                    continue

            H = [b]
            S = set(S)
            T_S = T - S

            if b == 1:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)

            for i in T_S:
                H = dup_mul(H, g[i], K)

            H = dup_trunc(H, pl, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm * H_norm <= B:
                T = T_S
                sorted_T = [i for i in sorted_T if i not in S]

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]
Esempio n. 9
0
def dmp_zz_wang(f, u, K, mod=None):
    """
    Factor primitive square-free polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
    is primitive and square-free in `x_1`, computes factorization
    of `f` into irreducibles over integers.

    The procedure is based on Wang's Enhanced Extended Zassenhaus
    algorithm. The algorithm works by viewing `f` as a univariate
    polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
    mapping is computed::

                      x_2 -> a_2, ..., x_n -> a_n

    where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
    The mapping is used to transform `f` into a univariate polynomial
    in `Z[x_1]`, which can be factored efficiently using Zassenhaus
    algorithm. The last step is to lift univariate factors to obtain
    true multivariate factors. For this purpose a parallel Hensel
    lifting procedure is used.

    **References**

    1. [Wang78]_
    2. [Geddes92]_

    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u-1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    if mod is None:
        if u == 1:
            mod = 2
        else:
            mod = 1

    history, configs, A, r = set([]), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
    eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
    eez_mod_step = query('EEZ_MODULUS_STEP')

    while len(configs) < eez_num_configs:
        for _ in xrange(eez_num_tries):
            A = [ K(randint(-mod, mod)) for _ in xrange(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r: # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == eez_num_configs:
                break
        else:
            mod += eez_mod_step

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors: # pragma: no cover
        if query('EEZ_RESTART_IF_NEEDED'):
            return dmp_zz_wang(f, u, K, mod+1)
        else:
            raise ExtraneousFactors("we need to restart algorithm with better parameters")

    negative, result = 0, []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result
Esempio n. 10
0
def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n+1))*2**n*A*b))
    C = int((n+1)**(2*n)*A**(2*n-1))
    gamma = int(ceil(2*log(C, 2)))
    bound = int(2*gamma*log(gamma))

    for p in xrange(3, bound+1):
        if not isprime(p) or b % p == 0:
            continue

        p = K.convert(p)

        F = gf_from_int_poly(f, p)

        if gf_sqf_p(F, p, K):
            break

    l = int(ceil(log(2*B + 1, p)))

    modular = []

    for ff in gf_factor_sqf(F, p, K)[1]:
        modular.append(gf_to_int_poly(ff, p))

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    T = set(range(len(g)))
    factors, s = [], 1

    while 2*s <= len(T):
        for S in subsets(T, s):
            G, H = [b], [b]

            S = set(S)

            for i in S:
                G = dup_mul(G, g[i], K)
            for i in T-S:
                H = dup_mul(H, g[i], K)

            G = dup_trunc(G, p**l, K)
            H = dup_trunc(H, p**l, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm*H_norm <= B:
                T = T - S

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]
Esempio n. 11
0
def dup_zz_heu_gcd(f, g, K):
    """
    Heuristic polynomial GCD in ``Z[x]``.

    Given univariate polynomials ``f`` and ``g`` in ``Z[x]``, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation.  The final step is to verify if the result is the
    correct GCD. This gives cofactors as a side effect.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dup_zz_heu_gcd

    >>> f = ZZ.map([1, 0, -1])
    >>> g = ZZ.map([1, -3, 2])

    >>> dup_zz_heu_gcd(f, g, ZZ)
    ([1, -1], [1, 1], [1, -2])

    **References**

    1. [Liao95]_

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    df = dup_degree(f)
    dg = dup_degree(g)

    gcd, f, g = dup_extract(f, g, K)

    if df == 0 or dg == 0:
        return [gcd], f, g

    f_norm = dup_max_norm(f, K)
    g_norm = dup_max_norm(g, K)

    B = 2*min(f_norm, g_norm) + 29

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dup_LC(f, K)),
                  g_norm // abs(dup_LC(g, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dup_eval(f, x, K)
        gg = dup_eval(g, x, K)

        if ff and gg:
            h = K.gcd(ff, gg)

            cff = ff // h
            cfg = gg // h

            h = _dup_zz_gcd_interpolate(h, x, K)
            h = dup_primitive(h, K)[1]

            cff_, r = dup_div(f, h, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg_

            cff = _dup_zz_gcd_interpolate(cff, x, K)

            h, r = dup_div(f, cff, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff, cfg_

            cfg = _dup_zz_gcd_interpolate(cfg, x, K)

            h, r = dup_div(g, cfg, K)

            if not r:
                cff_, r = dup_div(f, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff, cfg

        x = 73794*x * K.sqrt(K.sqrt(x)) // 27011

    raise HeuristicGCDFailed('no luck')
Esempio n. 12
0
def test_dup_max_norm():
    assert dup_max_norm([], ZZ) == 0
    assert dup_max_norm([1], ZZ) == 1

    assert dup_max_norm([1,4,2,3], ZZ) == 4
Esempio n. 13
0
def dup_zz_zassenhaus(f, K):
    """Factor primitive square-free polynomials in `Z[x]`. """
    n = dup_degree(f)

    if n == 1:
        return [f]

    fc = f[-1]
    A = dup_max_norm(f, K)
    b = dup_LC(f, K)
    B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
    C = int((n + 1)**(2*n)*A**(2*n - 1))
    gamma = int(_ceil(2*_log(C, 2)))
    bound = int(2*gamma*_log(gamma))
    a = []
    # choose a prime number `p` such that `f` be square free in Z_p
    # if there are many factors in Z_p, choose among a few different `p`
    # the one with fewer factors
    for px in range(3, bound + 1):
        if not isprime(px) or b % px == 0:
            continue

        px = K.convert(px)

        F = gf_from_int_poly(f, px)

        if not gf_sqf_p(F, px, K):
            continue
        fsqfx = gf_factor_sqf(F, px, K)[1]
        a.append((px, fsqfx))
        if len(fsqfx) < 15 or len(a) > 4:
            break
    p, fsqf = min(a, key=lambda x: len(x[1]))

    l = int(_ceil(_log(2*B + 1, p)))

    modular = [gf_to_int_poly(ff, p) for ff in fsqf]

    g = dup_zz_hensel_lift(p, f, modular, l, K)

    sorted_T = range(len(g))
    T = set(sorted_T)
    factors, s = [], 1
    pl = p**l

    while 2*s <= len(T):
        for S in subsets(sorted_T, s):
            # lift the constant coefficient of the product `G` of the factors
            # in the subset `S`; if it is does not divide `fc`, `G` does
            # not divide the input polynomial

            if b == 1:
                q = 1
                for i in S:
                    q = q*g[i][-1]
                q = q % pl
                if not _test_pl(fc, q, pl):
                    continue
            else:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)
                G = dup_primitive(G, K)[1]
                q = G[-1]
                if q and fc % q != 0:
                    continue

            H = [b]
            S = set(S)
            T_S = T - S

            if b == 1:
                G = [b]
                for i in S:
                    G = dup_mul(G, g[i], K)
                G = dup_trunc(G, pl, K)

            for i in T_S:
                H = dup_mul(H, g[i], K)

            H = dup_trunc(H, pl, K)

            G_norm = dup_l1_norm(G, K)
            H_norm = dup_l1_norm(H, K)

            if G_norm*H_norm <= B:
                T = T_S
                sorted_T = [i for i in sorted_T if i not in S]

                G = dup_primitive(G, K)[1]
                f = dup_primitive(H, K)[1]

                factors.append(G)
                b = dup_LC(f, K)

                break
        else:
            s += 1

    return factors + [f]
Esempio n. 14
0
def dup_zz_heu_gcd(f, g, K):
    """
    Heuristic polynomial GCD in `Z[x]`.

    Given univariate polynomials `f` and `g` in `Z[x]`, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation.  The final step is to verify if the result is the
    correct GCD. This gives cofactors as a side effect.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x = ring("x", ZZ)

    >>> R.dup_zz_heu_gcd(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    References
    ==========

    1. [Liao95]_

    """
    result = _dup_rr_trivial_gcd(f, g, K)

    if result is not None:
        return result

    df = dup_degree(f)
    dg = dup_degree(g)

    gcd, f, g = dup_extract(f, g, K)

    if df == 0 or dg == 0:
        return [gcd], f, g

    f_norm = dup_max_norm(f, K)
    g_norm = dup_max_norm(g, K)

    B = K(2*min(f_norm, g_norm) + 29)

    x = max(min(B, 99*K.sqrt(B)),
            2*min(f_norm // abs(dup_LC(f, K)),
                  g_norm // abs(dup_LC(g, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dup_eval(f, x, K)
        gg = dup_eval(g, x, K)

        if ff and gg:
            h = K.gcd(ff, gg)

            cff = ff // h
            cfg = gg // h

            h = _dup_zz_gcd_interpolate(h, x, K)
            h = dup_primitive(h, K)[1]

            cff_, r = dup_div(f, h, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg_

            cff = _dup_zz_gcd_interpolate(cff, x, K)

            h, r = dup_div(f, cff, K)

            if not r:
                cfg_, r = dup_div(g, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff, cfg_

            cfg = _dup_zz_gcd_interpolate(cfg, x, K)

            h, r = dup_div(g, cfg, K)

            if not r:
                cff_, r = dup_div(f, h, K)

                if not r:
                    h = dup_mul_ground(h, gcd, K)
                    return h, cff_, cfg

        x = 73794*x * K.sqrt(K.sqrt(x)) // 27011

    raise HeuristicGCDFailed('no luck')
Esempio n. 15
0
def dmp_zz_wang(f, u, K, **args):
    """Factor primitive square-free polynomials in `Z[X]`.

       Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
       is primitive and square-free in `x_1`, computes factorization
       of `f` into irreducibles over integers.

       The procedure is based on Wang's Enhanced Extended Zassenhaus
       algorithm. The algorithm works by viewing `f` as a univariate
       polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
       mapping is computed::

                         x_2 -> a_2, ..., x_n -> a_n

       where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
       The mapping is used to transform `f` into a univariate polynomial
       in `Z[x_1]`, which can be factored efficiently using Zassenhaus
       algorithm. The last step is to lift univariate factors to obtain
       true multivariate factors. For this purpose a parallel Hensel
       lifting procedure is used.

       References
       ==========

       .. [Wang78] P. S. Wang, An Improved Multivariate Polynomial Factoring
           Algorithm, Math. of Computation 32, 1978, pp. 1215--1231

       .. [Geddes92] K. Geddes, S. R. Czapor, G. Labahn, Algorithms for
           Computer Algebra, Springer, 1992, pp. 264--272
    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    eez_mod = args.get('mod', None)

    if eez_mod is None:
        if u == 1:
            eez_mod = 2
        else:
            eez_mod = 1

    history, configs, A, r = set([]), [], [K.zero] * u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    while len(configs) < EEZ_NUM_OK:
        for _ in xrange(EEZ_NUM_TRY):
            A = [K(randint(-eez_mod, eez_mod)) for _ in xrange(u)]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r:  # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == EEZ_NUM_OK:
                break
        else:
            eez_mod += EEZ_MOD_STEP

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors:  # pragma: no cover
        if args.get('restart', True):
            return dmp_zz_wang(f, u, K, mod=eez_mod + 1)
        else:
            raise ExtraneousFactors(
                "we need to restart algorithm with better parameters")

    negative, result = 0, []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result
Esempio n. 16
0
def dmp_zz_wang(f, u, K, **args):
    """Factor primitive square-free polynomials in `Z[X]`.

       Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which
       is primitive and square-free in `x_1`, computes factorization
       of `f` into irreducibles over integers.

       The procedure is based on Wang's Enhanced Extended Zassenhaus
       algorithm. The algorithm works by viewing `f` as a univariate
       polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation
       mapping is computed::

                         x_2 -> a_2, ..., x_n -> a_n

       where `a_i`, for `i = 2, ..., n`, are carefully chosen integers.
       The mapping is used to transform `f` into a univariate polynomial
       in `Z[x_1]`, which can be factored efficiently using Zassenhaus
       algorithm. The last step is to lift univariate factors to obtain
       true multivariate factors. For this purpose a parallel Hensel
       lifting procedure is used.

       References
       ==========

       .. [Wang78] P. S. Wang, An Improved Multivariate Polynomial Factoring
           Algorithm, Math. of Computation 32, 1978, pp. 1215--1231

       .. [Geddes92] K. Geddes, S. R. Czapor, G. Labahn, Algorithms for
           Computer Algebra, Springer, 1992, pp. 264--272
    """
    ct, T = dmp_zz_factor(dmp_LC(f, K), u-1, K)

    b = dmp_zz_mignotte_bound(f, u, K)
    p = K(nextprime(b))

    eez_mod = args.get('mod', None)

    if eez_mod is None:
        if u == 1:
            eez_mod = 2
        else:
            eez_mod = 1

    history, configs, A, r = set([]), [], [K.zero]*u, None

    try:
        cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)

        _, H = dup_zz_factor_sqf(s, K)

        r = len(H)

        if r == 1:
            return [f]

        bad_points = set([tuple(A)])
        configs = [(s, cs, E, H, A)]
    except EvaluationFailed:
        pass

    while len(configs) < EEZ_NUM_OK:
        for _ in xrange(EEZ_NUM_TRY):
            A = [ K(randint(-eez_mod, eez_mod)) for _ in xrange(u) ]

            if tuple(A) not in history:
                history.add(tuple(A))
            else:
                continue

            try:
                cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
            except EvaluationFailed:
                continue

            _, H = dup_zz_factor_sqf(s, K)

            rr = len(H)

            if r is not None:
                if rr != r: # pragma: no cover
                    if rr < r:
                        configs, r = [], rr
                    else:
                        continue
            else:
                r = rr

            if r == 1:
                return [f]

            configs.append((s, cs, E, H, A))

            if len(configs) == EEZ_NUM_OK:
                break
        else:
            eez_mod += EEZ_MOD_STEP

    s_norm, s_arg, i = None, 0, 0

    for s, _, _, _, _ in configs:
        _s_norm = dup_max_norm(s, K)

        if s_norm is not None:
            if _s_norm < s_norm:
                s_norm = _s_norm
                s_arg = i
        else:
            s_norm = _s_norm

        i += 1

    _, cs, E, H, A = configs[s_arg]

    try:
        f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
        factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
    except ExtraneousFactors: # pragma: no cover
        if args.get('restart', True):
            return dmp_zz_wang(f, u, K, mod=eez_mod+1)
        else:
            raise ExtraneousFactors("we need to restart algorithm with better parameters")

    negative, result = 0, []

    for f in factors:
        _, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)

        result.append(f)

    return result