Esempio n. 1
0
def dmp_sub(f, g, u, K):
    """Subtract dense polynomials in `K[X]`. """
    if not u:
        return dup_sub(f, g, K)

    df = dmp_degree(f, u)

    if df < 0:
        return dmp_neg(g, u, K)

    dg = dmp_degree(g, u)

    if dg < 0:
        return f

    v = u-1

    if df == dg:
        return dmp_strip([ dmp_sub(a, b, v, K) for a, b in zip(f, g) ], u)
    else:
        k = abs(df - dg)

        if df > dg:
            h, f = f[:k], f[k:]
        else:
            h, g = dmp_neg(g[:k], u, K), g[k:]

        return h + [ dmp_sub(a, b, v, K) for a, b in zip(f, g) ]
Esempio n. 2
0
def _dmp_simplify_gcd(f, g, u, K):
    """Try to eliminate ``x_0`` from GCD computation in ``K[X]``. """
    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if df > 0 and dg > 0:
        return None

    if not (df or dg):
        F = dmp_LC(f, K)
        G = dmp_LC(g, K)
    else:
        if not df:
            F = dmp_LC(f, K)
            G = dmp_content(g, u, K)
        else:
            F = dmp_content(f, u, K)
            G = dmp_LC(g, K)

    v = u - 1
    h = dmp_gcd(F, G, v, K)

    cff = [ dmp_exquo(cf, h, v, K) for cf in f ]
    cfg = [ dmp_exquo(cg, h, v, K) for cg in g ]

    return [h], cff, cfg
Esempio n. 3
0
def dmp_prem(f, g, u, K):
    """Polynomial pseudo-remainder in `K[X]`. """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    return dmp_mul_term(r, c, 0, u, K)
Esempio n. 4
0
def dmp_mul(f, g, u, K):
    """Multiply dense polynomials in `K[X]`. """
    if not u:
        return dup_mul(f, g, K)

    if f == g:
        return dmp_sqr(f, u, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    dg = dmp_degree(g, u)

    if dg < 0:
        return g

    h, v = [], u-1

    for i in xrange(0, df+dg+1):
        coeff = dmp_zero(v)

        for j in xrange(max(0, i-dg), min(df, i)+1):
            coeff = dmp_add(coeff, dmp_mul(f[j], g[i-j], v, K), v, K)

        h.append(coeff)

    return h
Esempio n. 5
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_list

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0], [], [], []])

    >>> dmp_sqf_list(f, 1, ZZ)
    (1, [([[1], [1, 0]], 2), ([[1], []], 3)])

    >>> dmp_sqf_list(f, 1, ZZ, all=True)
    (1, [([[1]], 1), ([[1], [1, 0]], 2), ([[1], []], 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if not K.has_CharacteristicZero:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field or not K.is_Exact:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Esempio n. 6
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x**5 + 2*x**4*y + x**3*y**2

    >>> R.dmp_sqf_list(f)
    (1, [(x + y, 2), (x, 3)])
    >>> R.dmp_sqf_list(f, all=True)
    (1, [(1, 1), (x + y, 2), (x, 3)])

    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if K.is_FiniteField:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Esempio n. 7
0
def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_collins_resultant(f, g)
    -2*y**2 - 5*y + 1

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u - 1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(K(n + m))*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
Esempio n. 8
0
def dmp_zz_collins_resultant(f, g, u, K):
    """
    Collins's modular resultant algorithm in `Z[X]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_collins_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_collins_resultant(f, g, 1, ZZ)
    [-2, -5, 1]

    """

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u-1)

    A = dmp_max_norm(f, u, K)
    B = dmp_max_norm(g, u, K)

    a = dmp_ground_LC(f, u, K)
    b = dmp_ground_LC(g, u, K)

    v = u - 1

    B = K(2)*K.factorial(n+m)*A**m*B**n
    r, p, P = dmp_zero(v), K.one, K.one

    while P <= B:
        p = K(nextprime(p))

        while not (a % p) or not (b % p):
            p = K(nextprime(p))

        F = dmp_ground_trunc(f, p, u, K)
        G = dmp_ground_trunc(g, p, u, K)

        try:
            R = dmp_zz_modular_resultant(F, G, p, u, K)
        except HomomorphismFailed:
            continue

        if K.is_one(P):
            r = R
        else:
            r = dmp_apply_pairs(r, R, _collins_crt, (P, p, K), v, K)

        P *= p

    return r
Esempio n. 9
0
def dmp_pdiv(f, g, u, K):
    """
    Polynomial pseudo-division in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_pdiv

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_pdiv(f, g, 1, ZZ)
    ([[2], [2, -2]], [[-4, 4]])

    """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
Esempio n. 10
0
def dmp_pdiv(f, g, u, K):
    """
    Polynomial pseudo-division in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_pdiv(x**2 + x*y, 2*x + 2)
    (2*x + 2*y - 2, -4*y + 4)

    """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r, dr = dmp_zero(u), f, df

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        lc_r = dmp_LC(r, K)
        j, N = dr - dg, N - 1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

        _dr, dr = dr, dmp_degree(r, u)

        if dr < dg:
            break
        elif not (dr < _dr):
            raise PolynomialDivisionFailed(f, g, K)

    c = dmp_pow(lc_g, N, u - 1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
Esempio n. 11
0
def dmp_ff_div(f, g, u, K):
    """
    Polynomial division with remainder over a field.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densearith import dmp_ff_div

    >>> f = QQ.map([[1], [1, 0], []])
    >>> g = QQ.map([[2], [2]])

    >>> dmp_ff_div(f, g, 1, QQ)
    ([[1/2], [1/2, -1/2]], [[-1/1, 1/1]])

    """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
Esempio n. 12
0
def dmp_rr_div(f, g, u, K):
    """
    Multivariate division with remainder over a ring.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_rr_div

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_rr_div(f, g, 1, ZZ)
    ([[]], [[1], [1, 0], []])

    """
    if not u:
        return dup_rr_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_rr_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
Esempio n. 13
0
def dmp_ff_div(f, g, u, K):
    """
    Polynomial division with remainder over a field.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> R.dmp_ff_div(x**2 + x*y, 2*x + 2)
    (1/2*x + 1/2*y - 1/2, -y + 1)

    """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r, dr = dmp_zero(u), f, df

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u - 1

    while True:
        lc_r = dmp_LC(r, K)
        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)
        r = dmp_sub(r, h, u, K)

        _dr, dr = dr, dmp_degree(r, u)

        if dr < dg:
            break
        elif not (dr < _dr):
            raise PolynomialDivisionFailed(f, g, K)

    return q, r
Esempio n. 14
0
def dmp_rr_div(f, g, u, K):
    """
    Multivariate division with remainder over a ring.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_rr_div(x**2 + x*y, 2*x + 2)
    (0, x**2 + x*y)

    """
    if not u:
        return dup_rr_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u - 1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_rr_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
Esempio n. 15
0
def dmp_prem(f, g, u, K):
    """
    Polynomial pseudo-remainder in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_prem

    >>> f = ZZ.map([[1], [1, 0], []])
    >>> g = ZZ.map([[2], [2]])

    >>> dmp_prem(f, g, 1, ZZ)
    [[-4, 4]]

    """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    return dmp_mul_term(r, c, 0, u, K)
Esempio n. 16
0
def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y,z,t = ring("x,y,z,t", ZZ)

    >>> R.dmp_discriminant(x**2*y + x*z + t)
    -4*y*t + z**2

    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u - 1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d*(d - 1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_quo(r, c, v, K)
Esempio n. 17
0
def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_discriminant

    >>> f = ZZ.map([[[[1]], [[]]], [[[1], []]], [[[1, 0]]]])

    >>> dmp_discriminant(f, 3, ZZ)
    [[[-4, 0]], [[1], [], []]]

    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u-1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d*(d-1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_exquo(r, c, v, K)
Esempio n. 18
0
def dmp_sqr(f, u, K):
    """Square dense polynomials in `K[X]`. """
    if not u:
        return dup_sqr(f, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    h, v = [], u-1

    for i in xrange(0, 2*df+1):
        c = dmp_zero(v)

        jmin = max(0, i-df)
        jmax = min(i, df)

        n = jmax - jmin + 1

        jmax = jmin + n // 2 - 1

        for j in xrange(jmin, jmax+1):
            c = dmp_add(c, dmp_mul(f[j], f[i-j], v, K), v, K)

        c = dmp_mul_ground(c, 2, v, K)

        if n & 1:
            elem = dmp_sqr(f[jmax+1], v, K)
            c = dmp_add(c, elem, v, K)

        h.append(c)

    return h
Esempio n. 19
0
def dmp_prem(f, g, u, K):
    """
    Polynomial pseudo-remainder in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_prem(x**2 + x*y, 2*x + 2)
    -4*y + 4

    """
    if not u:
        return dup_prem(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    r = f

    if df < dg:
        return r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr - dg, N - 1

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u - 1, K)

    return dmp_mul_term(r, c, 0, u, K)
Esempio n. 20
0
def dmp_mul(f, g, u, K):
    """
    Multiply dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_mul

    >>> f = ZZ.map([[1, 0], [1]])
    >>> g = ZZ.map([[1], []])

    >>> dmp_mul(f, g, 1, ZZ)
    [[1, 0], [1], []]

    """
    if not u:
        return dup_mul(f, g, K)

    if f == g:
        return dmp_sqr(f, u, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    dg = dmp_degree(g, u)

    if dg < 0:
        return g

    h, v = [], u-1

    for i in xrange(0, df+dg+1):
        coeff = dmp_zero(v)

        for j in xrange(max(0, i-dg), min(df, i)+1):
            coeff = dmp_add(coeff, dmp_mul(f[j], g[i-j], v, K), v, K)

        h.append(coeff)

    return dmp_strip(h, u)
Esempio n. 21
0
def dmp_sub(f, g, u, K):
    """
    Subtract dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_sub

    >>> f = ZZ.map([[1], [], [1, 0]])
    >>> g = ZZ.map([[1, 0], [1], []])

    >>> dmp_sub(f, g, 1, ZZ)
    [[-1, 1], [-1], [1, 0]]

    """
    if not u:
        return dup_sub(f, g, K)

    df = dmp_degree(f, u)

    if df < 0:
        return dmp_neg(g, u, K)

    dg = dmp_degree(g, u)

    if dg < 0:
        return f

    v = u-1

    if df == dg:
        return dmp_strip([ dmp_sub(a, b, v, K) for a, b in zip(f, g) ], u)
    else:
        k = abs(df - dg)

        if df > dg:
            h, f = f[:k], f[k:]
        else:
            h, g = dmp_neg(g[:k], u, K), g[k:]

        return h + [ dmp_sub(a, b, v, K) for a, b in zip(f, g) ]
Esempio n. 22
0
def dmp_mul(f, g, u, K):
    """
    Multiply dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_mul(x*y + 1, x)
    x**2*y + x

    """
    if not u:
        return dup_mul(f, g, K)

    if f == g:
        return dmp_sqr(f, u, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    dg = dmp_degree(g, u)

    if dg < 0:
        return g

    h, v = [], u - 1

    for i in xrange(0, df + dg + 1):
        coeff = dmp_zero(v)

        for j in xrange(max(0, i - dg), min(df, i) + 1):
            coeff = dmp_add(coeff, dmp_mul(f[j], g[i - j], v, K), v, K)

        h.append(coeff)

    return dmp_strip(h, u)
Esempio n. 23
0
def dmp_pdiv(f, g, u, K):
    """Polynomial pseudo-division in `K[X]`. """
    if not u:
        return dup_pdiv(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    N = df - dg + 1
    lc_g = dmp_LC(g, K)

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)
        j, N = dr-dg, N-1

        Q = dmp_mul_term(q, lc_g, 0, u, K)
        q = dmp_add_term(Q, lc_r, j, u, K)

        R = dmp_mul_term(r, lc_g, 0, u, K)
        G = dmp_mul_term(g, lc_r, j, u, K)
        r = dmp_sub(R, G, u, K)

    c = dmp_pow(lc_g, N, u-1, K)

    q = dmp_mul_term(q, c, 0, u, K)
    r = dmp_mul_term(r, c, 0, u, K)

    return q, r
Esempio n. 24
0
def dmp_sub(f, g, u, K):
    """
    Subtract dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sub(x**2 + y, x**2*y + x)
    -x**2*y + x**2 - x + y

    """
    if not u:
        return dup_sub(f, g, K)

    df = dmp_degree(f, u)

    if df < 0:
        return dmp_neg(g, u, K)

    dg = dmp_degree(g, u)

    if dg < 0:
        return f

    v = u - 1

    if df == dg:
        return dmp_strip([ dmp_sub(a, b, v, K) for a, b in zip(f, g) ], u)
    else:
        k = abs(df - dg)

        if df > dg:
            h, f = f[:k], f[k:]
        else:
            h, g = dmp_neg(g[:k], u, K), g[k:]

        return h + [ dmp_sub(a, b, v, K) for a, b in zip(f, g) ]
Esempio n. 25
0
def dmp_ff_div(f, g, u, K):
    """Polynomial division with remainder over a field. """
    if not u:
        return dup_ff_div(f, g, K)

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    if dg < 0:
        raise ZeroDivisionError("polynomial division")

    q, r = dmp_zero(u), f

    if df < dg:
        return q, r

    lc_g, v = dmp_LC(g, K), u-1

    while True:
        dr = dmp_degree(r, u)

        if dr < dg:
            break

        lc_r = dmp_LC(r, K)

        c, R = dmp_ff_div(lc_r, lc_g, v, K)

        if not dmp_zero_p(R, v):
            break

        j = dr - dg

        q = dmp_add_term(q, c, j, u, K)
        h = dmp_mul_term(g, c, j, u, K)

        r = dmp_sub(r, h, u, K)

    return q, r
Esempio n. 26
0
def dmp_qq_collins_resultant(f, g, u, K0):
    """
    Collins's modular resultant algorithm in `Q[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x,y = ring("x,y", QQ)

    >>> f = QQ(1,2)*x + y + QQ(2,3)
    >>> g = 2*x*y + x + 3

    >>> R.dmp_qq_collins_resultant(f, g)
    -2*y**2 - 7/3*y + 5/6

    """
    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u - 1)

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    r = dmp_zz_collins_resultant(f, g, u, K1)
    r = dmp_convert(r, u - 1, K1, K0)

    c = K0.convert(cf**m * cg**n, K1)

    return dmp_quo_ground(r, c, u - 1, K0)
Esempio n. 27
0
def dmp_qq_collins_resultant(f, g, u, K0):
    """
    Collins's modular resultant algorithm in `Q[X]`.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dmp_qq_collins_resultant

    >>> f = [[QQ(1,2)], [QQ(1), QQ(2,3)]]
    >>> g = [[QQ(2), QQ(1)], [QQ(3)]]

    >>> dmp_qq_collins_resultant(f, g, 1, QQ)
    [-2/1, -7/3, 5/6]

    """
    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < 0 or m < 0:
        return dmp_zero(u-1)

    K1 = K0.get_ring()

    cf, f = dmp_clear_denoms(f, u, K0, K1)
    cg, g = dmp_clear_denoms(g, u, K0, K1)

    f = dmp_convert(f, u, K0, K1)
    g = dmp_convert(g, u, K0, K1)

    r = dmp_zz_collins_resultant(f, g, u, K1)
    r = dmp_convert(r, u-1, K1, K0)

    c = K0.convert(cf**m * cg**n, K1)

    return dmp_quo_ground(r, c, u-1, K0)
Esempio n. 28
0
def dmp_sqr(f, u, K):
    """
    Square dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densearith import dmp_sqr

    >>> f = ZZ.map([[1], [1, 0], [1, 0, 0]])

    >>> dmp_sqr(f, 1, ZZ)
    [[1], [2, 0], [3, 0, 0], [2, 0, 0, 0], [1, 0, 0, 0, 0]]

    """
    if not u:
        return dup_sqr(f, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    h, v = [], u-1

    for i in xrange(0, 2*df+1):
        c = dmp_zero(v)

        jmin = max(0, i-df)
        jmax = min(i, df)

        n = jmax - jmin + 1

        jmax = jmin + n // 2 - 1

        for j in xrange(jmin, jmax+1):
            c = dmp_add(c, dmp_mul(f[j], f[i-j], v, K), v, K)

        c = dmp_mul_ground(c, K(2), v, K)

        if n & 1:
            elem = dmp_sqr(f[jmax+1], v, K)
            c = dmp_add(c, elem, v, K)

        h.append(c)

    return dmp_strip(h, u)
Esempio n. 29
0
def dmp_sqr(f, u, K):
    """
    Square dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqr(x**2 + x*y + y**2)
    x**4 + 2*x**3*y + 3*x**2*y**2 + 2*x*y**3 + y**4

    """
    if not u:
        return dup_sqr(f, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    h, v = [], u - 1

    for i in xrange(0, 2 * df + 1):
        c = dmp_zero(v)

        jmin = max(0, i - df)
        jmax = min(i, df)

        n = jmax - jmin + 1

        jmax = jmin + n // 2 - 1

        for j in xrange(jmin, jmax + 1):
            c = dmp_add(c, dmp_mul(f[j], f[i - j], v, K), v, K)

        c = dmp_mul_ground(c, K(2), v, K)

        if n & 1:
            elem = dmp_sqr(f[jmax + 1], v, K)
            c = dmp_add(c, elem, v, K)

        h.append(c)

    return dmp_strip(h, u)
Esempio n. 30
0
def dmp_sqr(f, u, K):
    """
    Square dense polynomials in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqr(x**2 + x*y + y**2)
    x**4 + 2*x**3*y + 3*x**2*y**2 + 2*x*y**3 + y**4

    """
    if not u:
        return dup_sqr(f, K)

    df = dmp_degree(f, u)

    if df < 0:
        return f

    h, v = [], u - 1

    for i in xrange(0, 2*df + 1):
        c = dmp_zero(v)

        jmin = max(0, i - df)
        jmax = min(i, df)

        n = jmax - jmin + 1

        jmax = jmin + n // 2 - 1

        for j in xrange(jmin, jmax + 1):
            c = dmp_add(c, dmp_mul(f[j], f[i - j], v, K), v, K)

        c = dmp_mul_ground(c, K(2), v, K)

        if n & 1:
            elem = dmp_sqr(f[jmax + 1], v, K)
            c = dmp_add(c, elem, v, K)

        h.append(c)

    return dmp_strip(h, u)
Esempio n. 31
0
def dmp_diff(f, m, u, K):
    """
    ``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

    >>> R.dmp_diff(f, 1)
    y**2 + 2*y + 3
    >>> R.dmp_diff(f, 2)
    0

    """
    if not u:
        return dup_diff(f, m, K)
    if m <= 0:
        return f

    n = dmp_degree(f, u)

    if n < m:
        return dmp_zero(u)

    deriv, v = [], u - 1

    if m == 1:
        for coeff in f[:-m]:
            deriv.append(dmp_mul_ground(coeff, K(n), v, K))
            n -= 1
    else:
        for coeff in f[:-m]:
            k = n

            for i in range(n - 1, n - m, -1):
                k *= i

            deriv.append(dmp_mul_ground(coeff, K(k), v, K))
            n -= 1

    return dmp_strip(deriv, u)
Esempio n. 32
0
def dmp_diff(f, m, u, K):
    """
    ``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1

    >>> R.dmp_diff(f, 1)
    y**2 + 2*y + 3
    >>> R.dmp_diff(f, 2)
    0

    """
    if not u:
        return dup_diff(f, m, K)
    if m <= 0:
        return f

    n = dmp_degree(f, u)

    if n < m:
        return dmp_zero(u)

    deriv, v = [], u - 1

    if m == 1:
        for coeff in f[:-m]:
            deriv.append(dmp_mul_ground(coeff, K(n), v, K))
            n -= 1
    else:
        for coeff in f[:-m]:
            k = n

            for i in range(n - 1, n - m, -1):
                k *= i

            deriv.append(dmp_mul_ground(coeff, K(k), v, K))
            n -= 1

    return dmp_strip(deriv, u)
Esempio n. 33
0
def dmp_diff(f, m, u, K):
    """
    ``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.densetools import dmp_diff

    >>> f = ZZ.map([[1, 2, 3], [2, 3, 1]])

    >>> dmp_diff(f, 1, 1, ZZ)
    [[1, 2, 3]]
    >>> dmp_diff(f, 2, 1, ZZ)
    [[]]

    """
    if not u:
        return dup_diff(f, m, K)
    if m <= 0:
        return f

    n = dmp_degree(f, u)

    if n < m:
        return dmp_zero(u)

    deriv, v = [], u - 1

    if m == 1:
        for coeff in f[:-m]:
            deriv.append(dmp_mul_ground(coeff, K(n), v, K))
            n -= 1
    else:
        for coeff in f[:-m]:
            k = n

            for i in xrange(n - 1, n - m, -1):
                k *= i

            deriv.append(dmp_mul_ground(coeff, K(k), v, K))
            n -= 1

    return dmp_strip(deriv, u)
def dmp_sqf_p(f, u, K):
    """
    Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_p(x**2 + 2*x*y + y**2)
    False
    >>> R.dmp_sqf_p(x**2 + y**2)
    True

    """
    if dmp_zero_p(f, u):
        return True
    else:
        return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u)
Esempio n. 35
0
def dmp_sqf_p(f, u, K):
    """
    Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.sqfreetools import dmp_sqf_p

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> dmp_sqf_p(f, 1, ZZ)
    False

    >>> f = ZZ.map([[1], [], [1, 0, 0]])
    >>> dmp_sqf_p(f, 1, ZZ)
    True

    """
    if dmp_zero_p(f, u):
        return True
    else:
        return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u)
Esempio n. 36
0
def dmp_prs_resultant(f, g, u, K):
    """
    Resultant algorithm in `K[X]` using subresultant PRS.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y - y**3 - 4
    >>> g = x**2 + x*y**3 - 9

    >>> a = 3*x*y**4 + y**3 - 27*y + 4
    >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

    >>> res, prs = R.dmp_prs_resultant(f, g)

    >>> res == b             # resultant has n-1 variables
    False
    >>> res == b.drop(x)
    True
    >>> prs == [f, g, a, b]
    True

    """
    if not u:
        return dup_prs_resultant(f, g, K)

    if dmp_zero_p(f, u) or dmp_zero_p(g, u):
        return (dmp_zero(u - 1), [])

    R, S = dmp_inner_subresultants(f, g, u, K)

    if dmp_degree(R[-1], u) > 0:
        return (dmp_zero(u - 1), R)

    return S[-1], R
Esempio n. 37
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x + y + 2
    >>> g = 2*x*y + x + 3

    >>> R.dmp_zz_modular_resultant(f, g, 5)
    -2*y**2 + 1

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n*M + m*N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Esempio n. 38
0
def dmp_zz_heu_gcd(f, g, u, K):
    """
    Heuristic polynomial GCD in ``Z[X]``.

    Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
    their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
    such that::

          h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)

    The algorithm is purely heuristic which means it may fail to compute
    the GCD. This will be signaled by raising an exception. In this case
    you will need to switch to another GCD method.

    The algorithm computes the polynomial GCD by evaluating polynomials
    f and g at certain points and computing (fast) integer GCD of those
    evaluations. The polynomial GCD is recovered from the integer image
    by interpolation. The evaluation proces reduces f and g variable by
    variable into a large integer.  The final step  is to verify if the
    interpolated polynomial is the correct GCD. This gives cofactors of
    the input polynomials as a side effect.

    **Examples**

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_heu_gcd

    >>> f = ZZ.map([[1], [2, 0], [1, 0, 0]])
    >>> g = ZZ.map([[1], [1, 0], []])

    >>> dmp_zz_heu_gcd(f, g, 1, ZZ)
    ([[1], [1, 0]], [[1], [1, 0]], [[1], []])

    **References**

    1. [Liao95]_

    """
    if not u:
        return dup_zz_heu_gcd(f, g, K)

    result = _dmp_rr_trivial_gcd(f, g, u, K)

    if result is not None:
        return result

    df = dmp_degree(f, u)
    dg = dmp_degree(g, u)

    gcd, f, g = dmp_ground_extract(f, g, u, K)

    f_norm = dmp_max_norm(f, u, K)
    g_norm = dmp_max_norm(g, u, K)

    B = 2 * min(f_norm, g_norm) + 29

    x = max(
        min(B, 99 * K.sqrt(B)),
        2 * min(f_norm // abs(dmp_ground_LC(f, u, K)),
                g_norm // abs(dmp_ground_LC(g, u, K))) + 2)

    for i in xrange(0, HEU_GCD_MAX):
        ff = dmp_eval(f, x, u, K)
        gg = dmp_eval(g, x, u, K)

        v = u - 1

        if not (dmp_zero_p(ff, v) or dmp_zero_p(gg, v)):
            h, cff, cfg = dmp_zz_heu_gcd(ff, gg, v, K)

            h = _dmp_zz_gcd_interpolate(h, x, v, K)
            h = dmp_ground_primitive(h, u, K)[1]

            cff_, r = dmp_div(f, h, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg_

            cff = _dmp_zz_gcd_interpolate(cff, x, v, K)

            h, r = dmp_div(f, cff, u, K)

            if dmp_zero_p(r, u):
                cfg_, r = dmp_div(g, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff, cfg_

            cfg = _dmp_zz_gcd_interpolate(cfg, x, v, K)

            h, r = dmp_div(g, cfg, u, K)

            if dmp_zero_p(r, u):
                cff_, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
                    h = dmp_mul_ground(h, gcd, u, K)
                    return h, cff_, cfg

        x = 73794 * x * K.sqrt(K.sqrt(x)) // 27011

    raise HeuristicGCDFailed('no luck')
Esempio n. 39
0
def test_dmp_degree():
    assert dmp_degree([[]], 1) == -1
    assert dmp_degree([[[]]], 2) == -1

    assert dmp_degree([[1]], 1) == 0
    assert dmp_degree([[2],[1]], 1) == 1
Esempio n. 40
0
def dmp_inner_subresultants(f, g, u, K):
    """
    Subresultant PRS algorithm in `K[X]`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_inner_subresultants

    >>> f = ZZ.map([[3, 0], [], [-1, 0, 0, -4]])
    >>> g = ZZ.map([[1], [1, 0, 0, 0], [-9]])

    >>> a = [[3, 0, 0, 0, 0], [1, 0, -27, 4]]
    >>> b = [[-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]

    >>> R = ZZ.map([f, g, a, b])
    >>> B = ZZ.map([[-1], [1], [9, 0, 0, 0, 0, 0, 0, 0, 0]])
    >>> D = ZZ.map([0, 1, 1])

    >>> dmp_inner_subresultants(f, g, 1, ZZ) == (R, B, D)
    True

    """
    if not u:
        return dup_inner_subresultants(f, g, K)

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < m:
        f, g = g, f
        n, m = m, n

    R = [f, g]
    d = n - m
    v = u - 1

    b = dmp_pow(dmp_ground(-K.one, v), d + 1, v, K)
    c = dmp_ground(-K.one, v)

    B, D = [b], [d]

    if dmp_zero_p(f, u) or dmp_zero_p(g, u):
        return R, B, D

    h = dmp_prem(f, g, u, K)
    h = dmp_mul_term(h, b, 0, u, K)

    while not dmp_zero_p(h, u):
        k = dmp_degree(h, u)
        R.append(h)

        lc = dmp_LC(g, K)

        p = dmp_pow(dmp_neg(lc, v, K), d, v, K)

        if not d:
            q = c
        else:
            q = dmp_pow(c, d - 1, v, K)

        c = dmp_quo(p, q, v, K)
        b = dmp_mul(dmp_neg(lc, v, K), dmp_pow(c, m - k, v, K), v, K)

        f, g, m, d = g, h, k, m - k

        B.append(b)
        D.append(d)

        h = dmp_prem(f, g, u, K)
        h = [dmp_quo(ch, b, v, K) for ch in h]

    return R, B, D
Esempio n. 41
0
def dmp_prs_resultant(f, g, u, K):
    """
    Resultant algorithm in `K[X]` using subresultant PRS.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_prs_resultant

    >>> f = ZZ.map([[3, 0], [], [-1, 0, 0, -4]])
    >>> g = ZZ.map([[1], [1, 0, 0, 0], [-9]])

    >>> a = ZZ.map([[3, 0, 0, 0, 0], [1, 0, -27, 4]])
    >>> b = ZZ.map([[-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]])

    >>> dmp_prs_resultant(f, g, 1, ZZ) == (b[0], [f, g, a, b])
    True

    """
    if not u:
        return dup_prs_resultant(f, g, K)

    if dmp_zero_p(f, u) or dmp_zero_p(g, u):
        return (dmp_zero(u - 1), [])

    R, B, D = dmp_inner_subresultants(f, g, u, K)

    if dmp_degree(R[-1], u) > 0:
        return (dmp_zero(u - 1), R)
    if dmp_one_p(R[-2], u, K):
        return (dmp_LC(R[-1], K), R)

    s, i, v = 1, 1, u - 1

    p = dmp_one(v, K)
    q = dmp_one(v, K)

    for b, d in list(zip(B, D))[:-1]:
        du = dmp_degree(R[i - 1], u)
        dv = dmp_degree(R[i], u)
        dw = dmp_degree(R[i + 1], u)

        if du % 2 and dv % 2:
            s = -s

        lc, i = dmp_LC(R[i], K), i + 1

        p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K),
                    dmp_pow(lc, du - dw, v, K), v, K)
        q = dmp_mul(q, dmp_pow(lc, dv * (1 + d), v, K), v, K)

        _, p, q = dmp_inner_gcd(p, q, v, K)

    if s < 0:
        p = dmp_neg(p, v, K)

    i = dmp_degree(R[-2], u)

    res = dmp_pow(dmp_LC(R[-1], K), i, v, K)
    res = dmp_quo(dmp_mul(res, p, v, K), q, v, K)

    return res, R
Esempio n. 42
0
def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys import ring, ZZ
        >>> R, x,y = ring("x,y", ZZ)

        >>> R.dmp_zz_factor(2*x**2 - 2*y**2)
        (2, [(x - y, 1), (x + y, 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    References
    ==========

    .. [1] [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all(d <= 0 for d in dmp_degree_list(g, u)):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)
        factors = dmp_trial_division(f, H, u, K)

    for g, k in dmp_zz_factor(G, u - 1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
Esempio n. 43
0
def dmp_inner_subresultants(f, g, u, K):
    """
    Subresultant PRS algorithm in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y - y**3 - 4
    >>> g = x**2 + x*y**3 - 9

    >>> a = 3*x*y**4 + y**3 - 27*y + 4
    >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

    >>> prs = [f, g, a, b]
    >>> sres = [[1], [1], [3, 0, 0, 0, 0], [-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]

    >>> R.dmp_inner_subresultants(f, g) == (prs, sres)
    True

    """
    if not u:
        return dup_inner_subresultants(f, g, K)

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < m:
        f, g = g, f
        n, m = m, n

    if dmp_zero_p(f, u):
        return [], []

    v = u - 1
    if dmp_zero_p(g, u):
        return [f], [dmp_ground(K.one, v)]

    R = [f, g]
    d = n - m

    b = dmp_pow(dmp_ground(-K.one, v), d + 1, v, K)

    h = dmp_prem(f, g, u, K)
    h = dmp_mul_term(h, b, 0, u, K)

    lc = dmp_LC(g, K)
    c = dmp_pow(lc, d, v, K)

    S = [dmp_ground(K.one, v), c]
    c = dmp_neg(c, v, K)

    while not dmp_zero_p(h, u):
        k = dmp_degree(h, u)
        R.append(h)

        f, g, m, d = g, h, k, m - k

        b = dmp_mul(dmp_neg(lc, v, K),
                    dmp_pow(c, d, v, K), v, K)

        h = dmp_prem(f, g, u, K)
        h = [ dmp_quo(ch, b, v, K) for ch in h ]

        lc = dmp_LC(g, K)

        if d > 1:
            p = dmp_pow(dmp_neg(lc, v, K), d, v, K)
            q = dmp_pow(c, d - 1, v, K)
            c = dmp_quo(p, q, v, K)
        else:
            c = dmp_neg(lc, v, K)

        S.append(dmp_neg(c, v, K))

    return R, S
Esempio n. 44
0
def dmp_zz_modular_resultant(f, g, p, u, K):
    """
    Compute resultant of `f` and `g` modulo a prime `p`.

    Examples
    ========

    >>> from sympy.polys.domains import ZZ
    >>> from sympy.polys.euclidtools import dmp_zz_modular_resultant

    >>> f = ZZ.map([[1], [1, 2]])
    >>> g = ZZ.map([[2, 1], [3]])

    >>> dmp_zz_modular_resultant(f, g, ZZ(5), 1, ZZ)
    [-2, 0, 1]

    """
    if not u:
        return gf_int(dup_prs_resultant(f, g, K)[0] % p, p)

    v = u - 1

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    N = dmp_degree_in(f, 1, u)
    M = dmp_degree_in(g, 1, u)

    B = n * M + m * N

    D, a = [K.one], -K.one
    r = dmp_zero(v)

    while dup_degree(D) <= B:
        while True:
            a += K.one

            if a == p:
                raise HomomorphismFailed('no luck')

            F = dmp_eval_in(f, gf_int(a, p), 1, u, K)

            if dmp_degree(F, v) == n:
                G = dmp_eval_in(g, gf_int(a, p), 1, u, K)

                if dmp_degree(G, v) == m:
                    break

        R = dmp_zz_modular_resultant(F, G, p, v, K)
        e = dmp_eval(r, a, v, K)

        if not v:
            R = dup_strip([R])
            e = dup_strip([e])
        else:
            R = [R]
            e = [e]

        d = K.invert(dup_eval(D, a, K), p)
        d = dup_mul_ground(D, d, K)
        d = dmp_raise(d, v, 0, K)

        c = dmp_mul(d, dmp_sub(R, e, v, K), v, K)
        r = dmp_add(r, c, v, K)

        r = dmp_ground_trunc(r, p, v, K)

        D = dup_mul(D, [K.one, -a], K)
        D = dup_trunc(D, p, K)

    return r
Esempio n. 45
0
def dmp_inner_subresultants(f, g, u, K):
    """
    Subresultant PRS algorithm in `K[X]`.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y - y**3 - 4
    >>> g = x**2 + x*y**3 - 9

    >>> a = 3*x*y**4 + y**3 - 27*y + 4
    >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

    >>> prs = [f, g, a, b]
    >>> beta = [[-1], [1], [9, 0, 0, 0, 0, 0, 0, 0, 0]]
    >>> delta = [0, 1, 1]

    >>> R.dmp_inner_subresultants(f, g) == (prs, beta, delta)
    True

    """
    if not u:
        return dup_inner_subresultants(f, g, K)

    n = dmp_degree(f, u)
    m = dmp_degree(g, u)

    if n < m:
        f, g = g, f
        n, m = m, n

    R = [f, g]
    d = n - m
    v = u - 1

    b = dmp_pow(dmp_ground(-K.one, v), d + 1, v, K)
    c = dmp_ground(-K.one, v)

    B, D = [b], [d]

    if dmp_zero_p(f, u) or dmp_zero_p(g, u):
        return R, B, D

    h = dmp_prem(f, g, u, K)
    h = dmp_mul_term(h, b, 0, u, K)

    while not dmp_zero_p(h, u):
        k = dmp_degree(h, u)
        R.append(h)

        lc = dmp_LC(g, K)

        p = dmp_pow(dmp_neg(lc, v, K), d, v, K)

        if not d:
            q = c
        else:
            q = dmp_pow(c, d - 1, v, K)

        c = dmp_quo(p, q, v, K)
        b = dmp_mul(dmp_neg(lc, v, K),
                    dmp_pow(c, m - k, v, K), v, K)

        f, g, m, d = g, h, k, m - k

        B.append(b)
        D.append(d)

        h = dmp_prem(f, g, u, K)

        h = [ dmp_quo(ch, b, v, K) for ch in h ]

    return R, B, D
Esempio n. 46
0
def test_dmp_zz_wang():
    p = ZZ(nextprime(dmp_zz_mignotte_bound(w_1, 2, ZZ)))

    assert p == ZZ(6291469)

    t_1, k_1, e_1 = dmp_normal([[1], []], 1, ZZ), 1, ZZ(-14)
    t_2, k_2, e_2 = dmp_normal([[1, 0]], 1, ZZ), 2, ZZ(3)
    t_3, k_3, e_3 = dmp_normal([[1], [1, 0]], 1, ZZ), 2, ZZ(-11)
    t_4, k_4, e_4 = dmp_normal([[1], [-1, 0]], 1, ZZ), 1, ZZ(-17)

    T = [t_1, t_2, t_3, t_4]
    K = [k_1, k_2, k_3, k_4]
    E = [e_1, e_2, e_3, e_4]

    T = zip(T, K)

    A = [ZZ(-14), ZZ(3)]

    S = dmp_eval_tail(w_1, A, 2, ZZ)
    cs, s = dup_primitive(S, ZZ)

    assert cs == 1 and s == S == \
        dup_normal([1036728, 915552, 55748, 105621, -17304, -26841, -644], ZZ)

    assert dmp_zz_wang_non_divisors(E, cs, 4, ZZ) == [7, 3, 11, 17]
    assert dup_sqf_p(s, ZZ) and dup_degree(s) == dmp_degree(w_1, 2)

    _, H = dup_zz_factor_sqf(s, ZZ)

    h_1 = dup_normal([44, 42, 1], ZZ)
    h_2 = dup_normal([126, -9, 28], ZZ)
    h_3 = dup_normal([187, 0, -23], ZZ)

    assert H == [h_1, h_2, h_3]

    lc_1 = dmp_normal([[-4], [-4, 0]], 1, ZZ)
    lc_2 = dmp_normal([[-1, 0, 0], []], 1, ZZ)
    lc_3 = dmp_normal([[1], [], [-1, 0, 0]], 1, ZZ)

    LC = [lc_1, lc_2, lc_3]

    assert dmp_zz_wang_lead_coeffs(w_1, T, cs, E, H, A, 2, ZZ) == (w_1, H, LC)

    H_1 = [
        dmp_normal(t, 0, ZZ)
        for t in [[44L, 42L, 1L], [126L, -9L, 28L], [187L, 0L, -23L]]
    ]
    H_2 = [
        dmp_normal(t, 1, ZZ)
        for t in [[[-4, -12], [-3, 0], [1]], [[-9, 0], [-9], [-2, 0]],
                  [[1, 0, -9], [], [1, -9]]]
    ]
    H_3 = [
        dmp_normal(t, 1, ZZ)
        for t in [[[-4, -12], [-3, 0], [1]], [[-9, 0], [-9], [-2, 0]],
                  [[1, 0, -9], [], [1, -9]]]
    ]

    c_1 = dmp_normal([-70686, -5863, -17826, 2009, 5031, 74], 0, ZZ)
    c_2 = dmp_normal(
        [[9, 12, -45, -108, -324], [18, -216, -810, 0],
         [2, 9, -252, -288, -945], [-30, -414, 0], [2, -54, -3, 81], [12, 0]],
        1, ZZ)
    c_3 = dmp_normal(
        [[-36, -108, 0], [-27, -36, -108], [-8, -42, 0], [-6, 0, 9], [2, 0]],
        1, ZZ)

    T_1 = [dmp_normal(t, 0, ZZ) for t in [[-3, 0], [-2], [1]]]
    T_2 = [dmp_normal(t, 1, ZZ) for t in [[[-1, 0], []], [[-3], []], [[-6]]]]
    T_3 = [dmp_normal(t, 1, ZZ) for t in [[[]], [[]], [[-1]]]]

    assert dmp_zz_diophantine(H_1, c_1, [], 5, p, 0, ZZ) == T_1
    assert dmp_zz_diophantine(H_2, c_2, [ZZ(-14)], 5, p, 1, ZZ) == T_2
    assert dmp_zz_diophantine(H_3, c_3, [ZZ(-14)], 5, p, 1, ZZ) == T_3

    factors = dmp_zz_wang_hensel_lifting(w_1, H, LC, A, p, 2, ZZ)

    assert dmp_expand(factors, 2, ZZ) == w_1
Esempio n. 47
0
def dmp_zz_factor(f, u, K):
    """
    Factor (non square-free) polynomials in `Z[X]`.

    Given a multivariate polynomial `f` in `Z[x]` computes its complete
    factorization `f_1, ..., f_n` into irreducibles over integers::

                 f = content(f) f_1**k_1 ... f_n**k_n

    The factorization is computed by reducing the input polynomial
    into a primitive square-free polynomial and factoring it using
    Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
    is used to recover the multiplicities of factors.

    The result is returned as a tuple consisting of::

             (content(f), [(f_1, k_1), ..., (f_n, k_n))

    Consider polynomial `f = 2*(x**2 - y**2)`::

        >>> from sympy.polys.factortools import dmp_zz_factor
        >>> from sympy.polys.domains import ZZ

        >>> dmp_zz_factor([[2], [], [-2, 0, 0]], 1, ZZ)
        (2, [([[1], [-1, 0]], 1), ([[1], [1, 0]], 1)])

    In result we got the following factorization::

                    f = 2 (x - y) (x + y)

    References
    ==========

    1. [Gathen99]_

    """
    if not u:
        return dup_zz_factor(f, K)

    if dmp_zero_p(f, u):
        return K.zero, []

    cont, g = dmp_ground_primitive(f, u, K)

    if dmp_ground_LC(g, u, K) < 0:
        cont, g = -cont, dmp_neg(g, u, K)

    if all(d <= 0 for d in dmp_degree_list(g, u)):
        return cont, []

    G, g = dmp_primitive(g, u, K)

    factors = []

    if dmp_degree(g, u) > 0:
        g = dmp_sqf_part(g, u, K)
        H = dmp_zz_wang(g, u, K)

        for h in H:
            k = 0

            while True:
                q, r = dmp_div(f, h, u, K)

                if dmp_zero_p(r, u):
                    f, k = q, k + 1
                else:
                    break

            factors.append((h, k))

    for g, k in dmp_zz_factor(G, u - 1, K)[1]:
        factors.insert(0, ([g], k))

    return cont, _sort_factors(factors)
Esempio n. 48
0
def dmp_prs_resultant(f, g, u, K):
    """
    Resultant algorithm in `K[X]` using subresultant PRS.

    Examples
    ========

    >>> from sympy.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> f = 3*x**2*y - y**3 - 4
    >>> g = x**2 + x*y**3 - 9

    >>> a = 3*x*y**4 + y**3 - 27*y + 4
    >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

    >>> res, prs = R.dmp_prs_resultant(f, g)

    >>> res == b             # resultant has n-1 variables
    False
    >>> res == b.drop(x)
    True
    >>> prs == [f, g, a, b]
    True

    """
    if not u:
        return dup_prs_resultant(f, g, K)

    if dmp_zero_p(f, u) or dmp_zero_p(g, u):
        return (dmp_zero(u - 1), [])

    R, B, D = dmp_inner_subresultants(f, g, u, K)

    if dmp_degree(R[-1], u) > 0:
        return (dmp_zero(u - 1), R)
    if dmp_one_p(R[-2], u, K):
        return (dmp_LC(R[-1], K), R)

    s, i, v = 1, 1, u - 1

    p = dmp_one(v, K)
    q = dmp_one(v, K)

    for b, d in list(zip(B, D))[:-1]:
        du = dmp_degree(R[i - 1], u)
        dv = dmp_degree(R[i  ], u)
        dw = dmp_degree(R[i + 1], u)

        if du % 2 and dv % 2:
            s = -s

        lc, i = dmp_LC(R[i], K), i + 1

        p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K),
                    dmp_pow(lc, du - dw, v, K), v, K)
        q = dmp_mul(q, dmp_pow(lc, dv*(1 + d), v, K), v, K)

        _, p, q = dmp_inner_gcd(p, q, v, K)

    if s < 0:
        p = dmp_neg(p, v, K)

    i = dmp_degree(R[-2], u)

    res = dmp_pow(dmp_LC(R[-1], K), i, v, K)
    res = dmp_quo(dmp_mul(res, p, v, K), q, v, K)

    return res, R