Esempio n. 1
0
def test_sstrrepr():
    assert sstr("abc") == "abc"
    assert sstrrepr("abc") == "'abc'"

    e = ["a", "b", "c", x]
    assert sstr(e) == "[a, b, c, x]"
    assert sstrrepr(e) == "['a', 'b', 'c', x]"
Esempio n. 2
0
def test_Matrix():
    M = Matrix([[x**+1, 1], [y, x + y]])
    assert str(M) == sstr(M) == "[x,     1]\n[y, x + y]"
    M = Matrix()
    assert str(M) == sstr(M) == "[]"
    M = Matrix(0, 1, lambda i, j: 0)
    assert str(M) == sstr(M) == "[]"
Esempio n. 3
0
def test_PrettyPoly():
    from sympy.polys.domains import QQ

    F = QQ.frac_field(x, y)
    R = QQ[x, y]
    assert sstr(F.convert(x / (x + y))) == sstr(x / (x + y))
    assert sstr(R.convert(x + y)) == sstr(x + y)
Esempio n. 4
0
def test_sstrrepr():
    assert sstr('abc') == 'abc'
    assert sstrrepr('abc') == "'abc'"

    e = ['a', 'b', 'c', x]
    assert sstr(e) == "[a, b, c, x]"
    assert sstrrepr(e) == "['a', 'b', 'c', x]"
Esempio n. 5
0
def test_set():
    assert sstr(set()) == 'set()'
    assert sstr(frozenset()) == 'frozenset()'

    assert sstr(set([1, 2, 3])) == 'set([1, 2, 3])'
    assert sstr(
        set([1, x, x**2, x**3, x**4])) == 'set([1, x, x**2, x**3, x**4])'
Esempio n. 6
0
def replaceWith(s, symbols, i):
    '''
    Replaces `With` and `Module by python functions`
    '''
    if type(s) == Function('With') or type(s) == Function('Module'):
        constraints = ', '
        result = '    def With{}({}):'.format(i, ', '.join(symbols))
        if type(s.args[0]) == Function('List'): # get all local varibles of With and Module
            L = list(s.args[0].args)
        else:
            L = [s.args[0]]

        for i in L: # define local variables
            if isinstance(i, Set):
                result += '\n        {} = {}'.format(i.args[0], sstr(i.args[1], sympy_integers=True))
            elif isinstance(i, Symbol):
                result += "\n        {} = Symbol('{}')".format(i, i)

        if type(s.args[1]) == Function('CompoundExpression'): # Expand CompoundExpression
            C = s.args[1]
            if isinstance(C.args[0], Set):
                result += '\n        {} = {}'.format(C.args[0].args[0], C.args[0].args[1])
            result += '\n        return {}'.format(sstr(C.args[1], sympy_integers=True))
            return result, constraints
        elif type(s.args[1]) == Function('Condition'):
            C = s.args[1]
            if len(C.args) == 2:
                constraints += 'CustomConstraint(lambda {}: {})'.format(', '.join([str(i) for i in C.free_symbols]), sstr(C.args[1], sympy_integers=True))
            result += '\n        return {}'.format(sstr(C.args[0], sympy_integers=True))
            return result, constraints

        result += '\n        return {}'.format(sstr(s.args[1], sympy_integers=True))
        return result, constraints
    else:
        return sstr(s, sympy_integers=True), ''
Esempio n. 7
0
def test_noncommutative():
    A, B, C = symbols('A,B,C', commutative=False)

    assert sstr(A*B*C**-1) == "A*B*C**(-1)"
    assert sstr(C**-1*A*B) == "C**(-1)*A*B"
    assert sstr(A*C**-1*B) == "A*C**(-1)*B"
    assert sstr(sqrt(A)) == "sqrt(A)"
    assert sstr(1/sqrt(A)) == "A**(-1/2)"
Esempio n. 8
0
def test_printmethod():
    class R(abs):
        def _sympystr(self, printer):
            return "foo(%s)" % printer._print(self.args[0])
    assert sstr(R(x)) == "foo(x)"
    class R(abs):
        def _sympystr(self, printer):
            return "foo"
    assert sstr(R(x)) == "foo"
Esempio n. 9
0
def test_Rational():
    n1 = Rational(1, 4)
    n2 = Rational(1, 3)
    n3 = Rational(2, 4)
    n4 = Rational(2, -4)
    n5 = Rational(0)
    n7 = Rational(3)
    n8 = Rational(-3)
    assert str(n1*n2) == "1/12"
    assert str(n1*n2) == "1/12"
    assert str(n3) == "1/2"
    assert str(n1*n3) == "1/8"
    assert str(n1 + n3) == "3/4"
    assert str(n1 + n2) == "7/12"
    assert str(n1 + n4) == "-1/4"
    assert str(n4*n4) == "1/4"
    assert str(n4 + n2) == "-1/6"
    assert str(n4 + n5) == "-1/2"
    assert str(n4*n5) == "0"
    assert str(n3 + n4) == "0"
    assert str(n1**n7) == "1/64"
    assert str(n2**n7) == "1/27"
    assert str(n2**n8) == "27"
    assert str(n7**n8) == "1/27"
    assert str(Rational("-25")) == "-25"
    assert str(Rational("1.25")) == "5/4"
    assert str(Rational("-2.6e-2")) == "-13/500"
    assert str(S("25/7")) == "25/7"
    assert str(S("-123/569")) == "-123/569"
    assert str(S("0.1[23]", rational=1)) == "61/495"
    assert str(S("5.1[666]", rational=1)) == "31/6"
    assert str(S("-5.1[666]", rational=1)) == "-31/6"
    assert str(S("0.[9]", rational=1)) == "1"
    assert str(S("-0.[9]", rational=1)) == "-1"

    assert str(sqrt(Rational(1, 4))) == "1/2"
    assert str(sqrt(Rational(1, 36))) == "1/6"

    assert str((123**25) ** Rational(1, 25)) == "123"
    assert str((123**25 + 1)**Rational(1, 25)) != "123"
    assert str((123**25 - 1)**Rational(1, 25)) != "123"
    assert str((123**25 - 1)**Rational(1, 25)) != "122"

    assert str(sqrt(Rational(81, 36))**3) == "27/8"
    assert str(1/sqrt(Rational(81, 36))**3) == "8/27"

    assert str(sqrt(-4)) == str(2*I)
    assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"

    assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
    x = Symbol("x")
    assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
    assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
    assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
        "Limit(x, x, S(7)/2)"
Esempio n. 10
0
def test_Matrix_str():
    M = Matrix([[x**+1, 1], [y, x + y]])
    assert str(M) == "Matrix([[x, 1], [y, x + y]])"
    assert sstr(M) == "Matrix([\n[x,     1],\n[y, x + y]])"
    M = Matrix([[1]])
    assert str(M) == sstr(M) == "Matrix([[1]])"
    M = Matrix([[1, 2]])
    assert str(M) == sstr(M) ==  "Matrix([[1, 2]])"
    M = Matrix()
    assert str(M) == sstr(M) == "Matrix(0, 0, [])"
    M = Matrix(0, 1, lambda i, j: 0)
    assert str(M) == sstr(M) == "Matrix(0, 1, [])"
Esempio n. 11
0
    def __repr__(self):
        str_sol = 'HolonomicSequence(%s, %s)' % ((self.recurrence).__repr__(), sstr(self.n))
        if not self._have_init_cond:
            return str_sol
        else:
            cond_str = ''
            seq_str = 0
            for i in self.u0:
                cond_str += ', u(%s) = %s' % (sstr(seq_str), sstr(i))
                seq_str += 1

            sol = str_sol + cond_str
            return sol
Esempio n. 12
0
    def __repr__(self):
        str_sol = 'HolonomicFunction(%s, %s)' % ((self.annihilator).__repr__(), sstr(self.x))
        if not self._have_init_cond:
            return str_sol
        else:
            cond_str = ''
            diff_str = ''
            for i in self.y0:
                cond_str += ', f%s(%s) = %s' % (diff_str, sstr(self.x0), sstr(i))
                diff_str += "'"

            sol = str_sol + cond_str
            return sol
Esempio n. 13
0
def downvalues_rules(r, parsed):
    '''
    Function which generates parsed rules by substituting all possible
    combinations of default values.
    '''
    res = []
    index = 0
    for i in r:
        print('parsing rule {}'.format(r.index(i) + 1))
        # Parse Pattern
        if i[1][1][0] == 'Condition':
            p = i[1][1][1].copy()
        else:
            p = i[1][1].copy()

        optional = get_default_values(p, {})
        pattern = generate_sympy_from_parsed(p.copy(), replace_Int=True)
        pattern, free_symbols = add_wildcards(pattern, optional=optional)
        free_symbols = list(set(free_symbols)) #remove common symbols

        # Parse Transformed Expression and Constraints
        if i[2][0] == 'Condition': # parse rules without constraints seperately
            constriant = divide_constraint(i[2][2], free_symbols) # seperate And constraints into indivdual constraints
            FreeQ_vars, FreeQ_x = seperate_freeq(i[2][2].copy()) # seperate FreeQ into indivdual constraints
            transformed = generate_sympy_from_parsed(i[2][1].copy(), symbols=free_symbols)
        else:
            constriant = ''
            FreeQ_vars, FreeQ_x = [], []
            transformed = generate_sympy_from_parsed(i[2].copy(), symbols=free_symbols)

        FreeQ_constraint = parse_freeq(FreeQ_vars, FreeQ_x, free_symbols)
        pattern = sympify(pattern)
        pattern = sstr(pattern, sympy_integers=True)
        pattern = setWC(pattern)
        transformed = sympify(transformed)

        index += 1
        if type(transformed) == Function('With') or type(transformed) == Function('Module'): # define seperate function when With appears
            transformed, With_constraints = replaceWith(transformed, free_symbols, index)
            parsed += '    pattern' + str(index) +' = Pattern(' + pattern + '' + FreeQ_constraint + '' + constriant + With_constraints + ')'
            parsed += '\n{}'.format(transformed)
            parsed += '\n    ' + 'rule' + str(index) +' = ReplacementRule(' + 'pattern' + sstr(index, sympy_integers=True) + ', lambda ' + ', '.join(free_symbols) + ' : ' + 'With{}({})'.format(index, ', '.join(free_symbols)) + ')\n    '
        else:
            transformed = sstr(transformed, sympy_integers=True)
            parsed += '    pattern' + str(index) +' = Pattern(' + pattern + '' + FreeQ_constraint + '' + constriant + ')'
            parsed += '\n    ' + 'rule' + str(index) +' = ReplacementRule(' + 'pattern' + sstr(index, sympy_integers=True) + ', lambda ' + ', '.join(free_symbols) + ' : ' + transformed + ')\n    '
        parsed += 'rubi.add(rule'+ str(index) +')\n\n'

    parsed += '    return rubi\n'

    return parsed
Esempio n. 14
0
def downvalues_rules(r, parsed):
    '''
    Function which generates parsed rules by substituting all possible
    combinations of default values.
    '''
    res = []

    index = 0
    for i in r:
        #print('parsing rule {}'.format(r.index(i) + 1)) # uncomment to display number of rules parsed

        # Parse Pattern
        if i[1][1][0] == 'Condition':
            p = i[1][1][1].copy()
        else:
            p = i[1][1].copy()

        optional = get_default_values(p, {})
        pattern = generate_sympy_from_parsed(p.copy(), replace_Int=True)
        pattern, free_symbols = add_wildcards(pattern, optional=optional)
        free_symbols = list(set(free_symbols)) #remove common symbols

        # Parse Transformed Expression and Constraints
        if i[2][0] == 'Condition': # parse rules without constraints seperately
            constriant = divide_constraint(i[2][2], free_symbols) # seperate And constraints into indivdual constraints
            FreeQ_vars, FreeQ_x = seperate_freeq(i[2][2].copy()) # seperate FreeQ into indivdual constraints
            transformed = generate_sympy_from_parsed(i[2][1].copy(), symbols=free_symbols)
        else:
            constriant = ''
            FreeQ_vars, FreeQ_x = [], []
            transformed = generate_sympy_from_parsed(i[2].copy(), symbols=free_symbols)

        FreeQ_constraint = parse_freeq(FreeQ_vars, FreeQ_x)
        pattern = sympify(pattern)
        pattern = sstr(pattern, sympy_integers=True)
        pattern = setWC(pattern)
        transformed = sympify(transformed)
        transformed = sstr(transformed, sympy_integers=True)

        index += 1
        parsed = parsed + '    pattern' + str(index) +' = Pattern(' + pattern + '' + FreeQ_constraint + '' + constriant + ')'
        parsed = parsed + '\n    ' + 'rule' + str(index) +' = ReplacementRule(' + 'pattern' + sstr(index, sympy_integers=True) + ', lambda ' + ', '.join(free_symbols) + ' : ' + transformed + ')\n    '
        parsed = parsed + 'rubi.add(rule'+ str(index) +')\n\n'

    parsed = parsed + '    return rubi\n'

    # Replace modified functions such as `_Sum`
    parsed = parsed.replace('_Sum', 'Sum')

    return parsed
Esempio n. 15
0
    def __str__(self):
        """
        Return latex version of expression as string
        Use symbol_name_dict from create_symbol_name_dict to convert
        some symbols into their corresponding latex expressions.

        In addition, if expression is a LinearEntity, then display as equation
        of line set to zero.
        """

        from sympy.geometry.line import LinearEntity

        expression = self._expression
        symbol_name_dict = create_symbol_name_dict()

        if isinstance(expression, LinearEntity):
            xvar = self._parameters.get("xvar", "x")
            yvar = self._parameters.get("yvar", "y")
            output = "%s = 0" % latex(expression.equation(x=xvar, y=yvar), symbol_names=symbol_name_dict)
        else:
            try:
                output = latex(expression, symbol_names=symbol_name_dict)
            except RuntimeError:
                # for now, since dividing by one creates infinite recursion
                # in latex printer, use sstr print
                from sympy.printing import sstr

                output = sstr(expression)
            except:
                output = "[error]"

        return output
Esempio n. 16
0
    def __str__(self):

        string = 'Univariate Differential Operator Algebra in intermediate '\
            + sstr(self.gen_symbol) + ' over the base ring ' + \
            (self.base).__str__()

        return string
Esempio n. 17
0
def test_set():
    assert sstr(set()) == 'set()'
    assert sstr(frozenset()) == 'frozenset()'

    assert sstr(set([1])) == '{1}'
    assert sstr(frozenset([1])) == 'frozenset({1})'
    assert sstr(set([1, 2, 3])) == '{1, 2, 3}'
    assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'

    assert sstr(
        set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}'
    assert sstr(
        frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
Esempio n. 18
0
def test_full_prec():
    assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
    assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
    assert sstr(S("0.3"), full_prec=False) == "0.3"
    assert sstr(S("0.3") * x, full_prec=True) in ["0.300000000000000*x", "x*0.300000000000000"]
    assert sstr(S("0.3") * x, full_prec="auto") in ["0.3*x", "x*0.3"]
    assert sstr(S("0.3") * x, full_prec=False) in ["0.3*x", "x*0.3"]
Esempio n. 19
0
    def __str__(self):
        listofpoly = self.listofpoly
        print_str = ''

        for i, j in enumerate(listofpoly):
            if j == self.parent.base.zero:
                continue

            if i == 0:
                print_str += '(' + sstr(j) + ')'
                continue

            if print_str:
                print_str += ' + '

            if i == 1:
                print_str += '(' + sstr(j) + ')Dx'
                continue

            print_str += '(' + sstr(j) + ')' + 'Dx**' + sstr(i)

        return print_str
Esempio n. 20
0
def test_Quantity_str():
    assert sstr(second, abbrev=True) == "s"
    assert sstr(joule, abbrev=True) == "J"
    assert str(second) == "second"
    assert str(joule) == "joule"
Esempio n. 21
0
def test_infinity():
    assert sstr(oo*I) == "oo*I"
Esempio n. 22
0
 def __repr__(self):
     return sstr(self)
Esempio n. 23
0
def test_SparseMatrix():
    M = SparseMatrix([[x**+1, 1], [y, x + y]])
    assert str(M) == "Matrix([[x, 1], [y, x + y]])"
    assert sstr(M) == "Matrix([\n[x,     1],\n[y, x + y]])"
Esempio n. 24
0
 def __str__(self):
     from sympy.printing import sstr
     return sstr(self, order=None)
Esempio n. 25
0
def downvalues_rules(r, header, cons_dict, cons_index):
    '''
    Function which generates parsed rules by substituting all possible
    combinations of default values.
    '''
    parsed = '\n\n'
    cons = ''
    cons_import = []
    index = 0
    for i in r:
        print('parsing rule {}'.format(r.index(i) + 1))
        # Parse Pattern
        if i[1][1][0] == 'Condition':
            p = i[1][1][1].copy()
        else:
            p = i[1][1].copy()

        optional = get_default_values(p, {})
        pattern = generate_sympy_from_parsed(p.copy(), replace_Int=True)
        pattern, free_symbols = add_wildcards(pattern, optional=optional)
        free_symbols = list(set(free_symbols))  #remove common symbols

        # Parse Transformed Expression and Constraints
        if i[2][0] == 'Condition':  # parse rules without constraints separately
            constriant, constraint_def, cons_index = divide_constraint(
                i[2][2], free_symbols, cons_index, cons_dict, cons_import
            )  # separate And constraints into individual constraints
            FreeQ_vars, FreeQ_x = seperate_freeq(
                i[2][2].copy())  # separate FreeQ into individual constraints
            transformed = generate_sympy_from_parsed(i[2][1].copy(),
                                                     symbols=free_symbols)
        else:
            constriant = ''
            constraint_def = ''
            FreeQ_vars, FreeQ_x = [], []
            transformed = generate_sympy_from_parsed(i[2].copy(),
                                                     symbols=free_symbols)

        FreeQ_constraint, free_cons_def, cons_index = parse_freeq(
            FreeQ_vars, FreeQ_x, cons_index, cons_dict, cons_import,
            free_symbols)
        pattern = sympify(pattern,
                          locals={
                              "Or": Function("Or"),
                              "And": Function("And"),
                              "Not": Function("Not")
                          })
        pattern = sstr(pattern, sympy_integers=True)
        pattern = setWC(pattern)
        transformed = sympify(transformed,
                              locals={
                                  "Or": Function("Or"),
                                  "And": Function("And"),
                                  "Not": Function("Not")
                              })
        constraint_def = constraint_def + free_cons_def
        cons += constraint_def
        index += 1
        if type(transformed) == Function('With') or type(
                transformed) == Function(
                    'Module'):  # define separate function when With appears
            transformed, With_constraints = replaceWith(
                transformed, free_symbols, index)
            parsed += '    pattern' + str(
                index
            ) + ' = Pattern(' + pattern + '' + FreeQ_constraint + '' + constriant + With_constraints + ')'
            parsed += '\n{}'.format(transformed)
            parsed += '\n    ' + 'rule' + str(
                index) + ' = ReplacementRule(' + 'pattern' + sstr(
                    index, sympy_integers=True) + ', lambda ' + ', '.join(
                        free_symbols) + ' : ' + 'With{}({})'.format(
                            index, ', '.join(free_symbols)) + ')\n    '
        else:
            transformed = sstr(transformed, sympy_integers=True)
            parsed += '    pattern' + str(
                index
            ) + ' = Pattern(' + pattern + '' + FreeQ_constraint + '' + constriant + ')'
            parsed += '\n    ' + 'rule' + str(
                index) + ' = ReplacementRule(' + 'pattern' + sstr(
                    index, sympy_integers=True) + ', lambda ' + ', '.join(
                        free_symbols) + ' : ' + transformed + ')\n    '
        parsed += 'rubi.add(rule' + str(index) + ')\n\n'

    parsed += '    return rubi\n'

    header += '    from sympy.integrals.rubi.constraints import ' + ', '.join(
        word for word in cons_import)
    parsed = header + parsed
    return parsed, cons_index, cons
def test_true_false():
    assert str(true) == repr(true) == sstr(true) == "True"
    assert str(false) == repr(false) == sstr(false) == "False"
Esempio n. 27
0
    def __str__(self):
        string = 'Univariate Recurrence Operator Algebra in intermediate '\
            + sstr(self.gen_symbol) + ' over the base ring ' + \
            (self.base).__str__()

        return string
Esempio n. 28
0
def test_Dict():
    assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
    assert str(Dict({1: x**2, 2: y*x})) in (
        "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
    assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_PrettyPoly():
    from sympy.polys.domains import QQ
    F = QQ.frac_field(x, y)
    R = QQ[x, y]
    assert sstr(F.convert(x / (x + y))) == sstr(x / (x + y))
    assert sstr(R.convert(x + y)) == sstr(x + y)
Esempio n. 30
0
def test_Predicate():
    assert sstr(Q.even) == 'Q.even'
Esempio n. 31
0
def test_AppliedPredicate():
    assert sstr(Q.even(x)) == 'Q.even(x)'
Esempio n. 32
0
def _divide_constriant(s, symbols):
    # Creates a CustomConstraint of the form `CustomConstraint(lambda a, x: FreeQ(a, x))`
    lambda_symbols = list(set(get_free_symbols(s, symbols, [])))
    return 'CustomConstraint(lambda {}: {})'.format(', '.join(lambda_symbols), sstr(sympify(generate_sympy_from_parsed(s)), sympy_integers=True))
Esempio n. 33
0
def test_PrettyPoly():
    F = QQ.frac_field(x, y)
    R = QQ[x, y]
    assert sstr(F.convert(x / (x + y))) == sstr(x / (x + y))
    assert sstr(R.convert(x + y)) == sstr(x + y)
Esempio n. 34
0
def test_settings():
    raises(TypeError, lambda: sstr(S(4), method="garbage"))
Esempio n. 35
0
 def __str__(self):
     """String representation of a TWave."""
     from sympy.printing import sstr
     return type(self).__name__ + sstr(self.args)
Esempio n. 36
0
 def __repr__(self):
     from sympy.printing import sstr
     return sstr(self)
Esempio n. 37
0
 def __str__(self):
     from sympy.printing import sstr
     return type(self).__name__ + sstr(self.args)
Esempio n. 38
0
def test_list():
    assert str([x]) == sstr([x]) == "[x]"
    assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
    assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
Esempio n. 39
0
 def __str__(self):
     return sstr(self)
Esempio n. 40
0
 def __str__(self):
     """String representation of a GeometryEntity."""
     from sympy.printing import sstr
     return type(self).__name__ + sstr(tuple(self))
Esempio n. 41
0
def test_Dict():
    assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
    assert str(Dict({1: x**2, 2: y*x})) in (
        "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
    assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
Esempio n. 42
0
 def __str__(self):
     return 'System(\n' + sstr(self.f) + ',\n' \
            + sstr(self.g) + ')'
Esempio n. 43
0
def test_Geometry():
    assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
    assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
Esempio n. 44
0
def test_NDimArray():
    assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000'
    assert sstr(NDimArray(1.0), full_prec=False) == '1.0'
    assert sstr(NDimArray([1.0, 2.0]),
                full_prec=True) == '[1.00000000000000, 2.00000000000000]'
    assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]'
Esempio n. 45
0
 def __str__(self):
     return 'StateSpaceModel(\n' + sstr(self.A) + ',\n' \
            + sstr(self.B) + ',\n' \
            + sstr(self.C) + ',\n' \
            + sstr(self.D) + ')'
Esempio n. 46
0
 def __str__(self):
     str_sol = 'Beam({}, {}, {})'.format(sstr(self._length),
                                         sstr(self._elastic_modulus),
                                         sstr(self._second_moment))
     return str_sol
Esempio n. 47
0
def test_Quantity_str():
    assert sstr(second, abbrev=True) == "s"
    assert sstr(joule, abbrev=True) == "J"
    assert str(second) == "second"
    assert str(joule) == "joule"
Esempio n. 48
0
def test_infinity():
    assert sstr(oo * I) == "oo*I"
Esempio n. 49
0
def test_tuple():
    assert str((x,)) == sstr((x,)) == "(x,)"
    assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
    assert str((x + y, (
        1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
Esempio n. 50
0
def test_settings():
    raises(TypeError, lambda: sstr(S(4), method="garbage"))
Esempio n. 51
0
def test_SparseMatrix():
    M = SparseMatrix([[x**+1, 1], [y, x + y]])
    assert str(M) == sstr(M) == "[x,     1]\n[y, x + y]"
Esempio n. 52
0
 def __str__(self):
     from sympy.printing import sstr
     return type(self).__name__ + ': ' + sstr(
         [self._permittivity, self._permeability, self._n])
Esempio n. 53
0
def test_Geometry():
    assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
    assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
Esempio n. 54
0
def test_printing_str_array_expressions():
    assert sstr(ArraySymbol("A", (2, 3, 4))) == "A"
    assert sstr(ArrayElement("A", (2, 1 / (1 - x), 0))) == "A[2, 1/(1 - x), 0]"
    M = MatrixSymbol("M", 3, 3)
    N = MatrixSymbol("N", 3, 3)
    assert sstr(ArrayElement(M * N, [x, 0])) == "(M*N)[x, 0]"
Esempio n. 55
0
def test_true_false():
    assert str(true) == repr(true) == sstr(true) == "True"
    assert str(false) == repr(false) == sstr(false) == "False"
Esempio n. 56
0
def test_list():
    assert str([x]) == sstr([x]) == "[x]"
    assert str([x**2, x * y + 1]) == sstr([x**2, x * y + 1
                                           ]) == "[x**2, x*y + 1]"
    assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
Esempio n. 57
0
def _divide_constriant(s, symbols):
    # Creates a CustomConstraint of the form `CustomConstraint(lambda a, x: FreeQ(a, x))`
    if s[0] == 'FreeQ':
        return ''
    lambda_symbols = list(set(get_free_symbols(s, symbols, [])))
    return 'CustomConstraint(lambda {}: {})'.format(', '.join(lambda_symbols), sstr(sympify(generate_sympy_from_parsed(s)), sympy_integers=True))
Esempio n. 58
0
def test_SparseMatrix():
    M = SparseMatrix([[x**+1, 1], [y, x + y]])
    assert str(M) == "Matrix([[x, 1], [y, x + y]])"
    assert sstr(M) == "Matrix([\n[x,     1],\n[y, x + y]])"
Esempio n. 59
0
 def __str__(self):
     str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(self._second_moment))
     return str_sol
Esempio n. 60
0
def test_tuple():
    assert str((x, )) == sstr((x, )) == "(x,)"
    assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
    assert str((x + y, (1 + x, x**2))) == sstr(
        (x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"