Esempio n. 1
0
def _separate_sq(p):
    """
    helper function for ``_minimal_polynomial_sq``

    It selects a rational ``g`` such that the polynomial ``p``
    consists of a sum of terms whose surds squared have gcd equal to ``g``
    and a sum of terms with surds squared prime with ``g``;
    then it takes the field norm to eliminate ``sqrt(g)``

    See simplify.simplify.split_surds and polytools.sqf_norm.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> from sympy.polys.numberfields.minpoly import _separate_sq
    >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
    >>> p = _separate_sq(p); p
    -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
    >>> p = _separate_sq(p); p
    -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
    >>> p = _separate_sq(p); p
    -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400

    """
    def is_sqrt(expr):
        return expr.is_Pow and expr.exp is S.Half

    # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
    a = []
    for y in p.args:
        if not y.is_Mul:
            if is_sqrt(y):
                a.append((S.One, y**2))
            elif y.is_Atom:
                a.append((y, S.One))
            elif y.is_Pow and y.exp.is_integer:
                a.append((y, S.One))
            else:
                raise NotImplementedError
        else:
            T, F = sift(y.args, is_sqrt, binary=True)
            a.append((Mul(*F), Mul(*T)**2))
    a.sort(key=lambda z: z[1])
    if a[-1][1] is S.One:
        # there are no surds
        return p
    surds = [z for y, z in a]
    for i in range(len(surds)):
        if surds[i] != 1:
            break
    from sympy.simplify.radsimp import _split_gcd
    g, b1, b2 = _split_gcd(*surds[i:])
    a1 = []
    a2 = []
    for y, z in a:
        if z in b1:
            a1.append(y * z**S.Half)
        else:
            a2.append(y * z**S.Half)
    p1 = Add(*a1)
    p2 = Add(*a2)
    p = _mexpand(p1**2) - _mexpand(p2**2)
    return p
Esempio n. 2
0
def _separate_sq(p):
    """
    helper function for ``_minimal_polynomial_sq``

    It selects a rational ``g`` such that the polynomial ``p``
    consists of a sum of terms whose surds squared have gcd equal to ``g``
    and a sum of terms with surds squared prime with ``g``;
    then it takes the field norm to eliminate ``sqrt(g)``

    See simplify.simplify.split_surds and polytools.sqf_norm.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import x
    >>> from sympy.polys.numberfields import _separate_sq
    >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
    >>> p = _separate_sq(p); p
    -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
    >>> p = _separate_sq(p); p
    -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
    >>> p = _separate_sq(p); p
    -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400

    """
    from sympy.utilities.iterables import sift
    def is_sqrt(expr):
        return expr.is_Pow and expr.exp is S.Half
    # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
    a = []
    for y in p.args:
        if not y.is_Mul:
            if is_sqrt(y):
                a.append((S.One, y**2))
            elif y.is_Atom:
                a.append((y, S.One))
            elif y.is_Pow and y.exp.is_integer:
                a.append((y, S.One))
            else:
                raise NotImplementedError
            continue
        T, F = sift(y.args, is_sqrt, binary=True)
        a.append((Mul(*F), Mul(*T)**2))
    a.sort(key=lambda z: z[1])
    if a[-1][1] is S.One:
        # there are no surds
        return p
    surds = [z for y, z in a]
    for i in range(len(surds)):
        if surds[i] != 1:
            break
    g, b1, b2 = _split_gcd(*surds[i:])
    a1 = []
    a2 = []
    for y, z in a:
        if z in b1:
            a1.append(y*z**S.Half)
        else:
            a2.append(y*z**S.Half)
    p1 = Add(*a1)
    p2 = Add(*a2)
    p = _mexpand(p1**2) - _mexpand(p2**2)
    return p