Esempio n. 1
0
def _solve_as_rational(f, symbol, domain):
    """ solve rational functions"""
    f = together(f, deep=True)
    g, h = fraction(f)
    if not h.has(symbol):
        return _solve_as_poly(g, symbol, domain)
    else:
        valid_solns = _solveset(g, symbol, domain)
        invalid_solns = _solveset(h, symbol, domain)
        return valid_solns - invalid_solns
Esempio n. 2
0
def _solve_as_rational(f, symbol, solveset_solver, as_poly_solver):
    """ solve rational functions"""
    f = together(f, deep=True)
    g, h = fraction(f)
    if not h.has(symbol):
        return as_poly_solver(g, symbol)
    else:
        valid_solns = solveset_solver(g, symbol)
        invalid_solns = solveset_solver(h, symbol)
        return valid_solns - invalid_solns
Esempio n. 3
0
def _solve_as_rational(f, symbol, solveset_solver, as_poly_solver):
    """ solve rational functions"""
    f = together(f, deep=True)
    g, h = fraction(f)
    if not h.has(symbol):
        return as_poly_solver(g, symbol)
    else:
        valid_solns = solveset_solver(g, symbol)
        invalid_solns = solveset_solver(h, symbol)
        return valid_solns - invalid_solns
Esempio n. 4
0
def _solve_real_trig(f, symbol):
    """ Helper to solve trigonometric equations """
    f = trigsimp(f)
    f = f.rewrite(exp)
    f = together(f)
    g, h = fraction(f)
    y = Dummy('y')
    g, h = g.expand(), h.expand()
    g, h = g.subs(exp(I * symbol), y), h.subs(exp(I * symbol), y)
    if g.has(symbol) or h.has(symbol):
        return ConditionSet(symbol, Eq(f, 0), S.Reals)

    solns = solveset_complex(g, y) - solveset_complex(h, y)

    if isinstance(solns, FiniteSet):
        return Union(
            *[invert_complex(exp(I * symbol), s, symbol)[1] for s in solns])
    elif solns is S.EmptySet:
        return S.EmptySet
    else:
        return ConditionSet(symbol, Eq(f, 0), S.Reals)
Esempio n. 5
0
def _solve_real_trig(f, symbol):
    """ Helper to solve trigonometric equations """
    f = trigsimp(f)
    f = f.rewrite(exp)
    f = together(f)
    g, h = fraction(f)
    y = Dummy('y')
    g, h = g.expand(), h.expand()
    g, h = g.subs(exp(I*symbol), y), h.subs(exp(I*symbol), y)
    if g.has(symbol) or h.has(symbol):
        raise NotImplementedError

    solns = solveset_complex(g, y) - solveset_complex(h, y)

    if isinstance(solns, FiniteSet):
        return Union(*[invert_complex(exp(I*symbol), s, symbol)[1]
                       for s in solns])
    elif solns is S.EmptySet:
        return S.EmptySet
    else:
        raise NotImplementedError
Esempio n. 6
0
def _solve_trig(f, symbol, domain):
    """ Helper to solve trigonometric equations """
    f = trigsimp(f)
    f_original = f
    f = f.rewrite(exp)
    f = together(f)
    g, h = fraction(f)
    y = Dummy("y")
    g, h = g.expand(), h.expand()
    g, h = g.subs(exp(I * symbol), y), h.subs(exp(I * symbol), y)
    if g.has(symbol) or h.has(symbol):
        return ConditionSet(symbol, Eq(f, 0), S.Reals)

    solns = solveset_complex(g, y) - solveset_complex(h, y)

    if isinstance(solns, FiniteSet):
        result = Union(*[invert_complex(exp(I * symbol), s, symbol)[1] for s in solns])
        return Intersection(result, domain)
    elif solns is S.EmptySet:
        return S.EmptySet
    else:
        return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
Esempio n. 7
0
def solveset_complex(f, symbol):
    """ Solve a complex valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` equal to
        zero. An `EmptySet` is returned if no solution is found.
        A `ConditionSet` is returned as an unsolved object if algorithms
        to evaluate complete solutions are not yet implemented.

    `solveset_complex` claims to be complete in the solution set that
    it returns.

    Raises
    ======

    NotImplementedError
        The algorithms to solve inequalities in complex domain  are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.

    See Also
    ========

    solveset_real: solver for real domain

    Examples
    ========

    >>> from sympy import Symbol, exp
    >>> from sympy.solvers.solveset import solveset_complex
    >>> from sympy.abc import x, a, b, c
    >>> solveset_complex(a*x**2 + b*x +c, x)
    {-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)}

    * Due to the fact that complex extension of my real valued functions are
      multivariate even some simple equations can have infinitely many
      solution.

    >>> solveset_complex(exp(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*I*pi), Integers())

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    original_eq = f
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    f = together(f)
    # Without this equations like a + 4*x**2 - E keep oscillating
    # into form  a/4 + x**2 - E/4 and (a + 4*x**2 - E)/4
    if not fraction(f)[1].has(symbol):
        f = expand(f)

    if f.is_zero:
        return S.Complexes
    elif not f.has(symbol):
        result = EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        result = Union(*[solveset_complex(m, symbol) for m in f.args])
    else:
        lhs, rhs_s = invert_complex(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            result = EmptySet()
            for equation in equations:
                if equation == f:
                    if any(
                            _has_rational_power(g, symbol)[0]
                            for g in equation.args):
                        result += _solve_radical(equation, symbol,
                                                 solveset_complex)
                    else:
                        result += _solve_as_rational(
                            equation,
                            symbol,
                            solveset_solver=solveset_complex,
                            as_poly_solver=_solve_as_poly_complex)
                else:
                    result += solveset_complex(equation, symbol)
        else:
            result = ConditionSet(symbol, Eq(f, 0), S.Complexes)

    if isinstance(result, FiniteSet):
        result = [
            s for s in result
            if isinstance(s, RootOf) or domain_check(original_eq, symbol, s)
        ]
        return FiniteSet(*result)
    else:
        return result
Esempio n. 8
0
def solveset_real(f, symbol):
    """ Solves a real valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is equal to
        zero. An `EmptySet` is returned if no solution is found.
        A `ConditionSet` is returned as unsolved object if algorithms
        to evaluate complete solutions are not yet implemented.

    `solveset_real` claims to be complete in the set of the solution it
    returns.

    Raises
    ======

    NotImplementedError
        Algorithms to solve inequalities in complex domain are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    See Also
    =======

    solveset_complex : solver for complex domain

    Examples
    ========

    >>> from sympy import Symbol, exp, sin, sqrt, I
    >>> from sympy.solvers.solveset import solveset_real
    >>> x = Symbol('x', real=True)
    >>> a = Symbol('a', real=True, finite=True, positive=True)
    >>> solveset_real(x**2 - 1, x)
    {-1, 1}
    >>> solveset_real(sqrt(5*x + 6) - 2 - x, x)
    {-1, 2}
    >>> solveset_real(x - I, x)
    EmptySet()
    >>> solveset_real(x - a, x)
    {a}
    >>> solveset_real(exp(x) - a, x)
    {log(a)}

    * In case the equation has infinitely many solutions an infinitely indexed
      `ImageSet` is returned.

    >>> solveset_real(sin(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*pi + pi/2), Integers())

    * If the equation is true for any arbitrary value of the symbol a `S.Reals`
      set is returned.

    >>> solveset_real(x - x, x)
    (-oo, oo)

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    original_eq = f
    f = together(f)

    # In this, unlike in solveset_complex, expression should only
    # be expanded when fraction(f)[1] does not contain the symbol
    # for which we are solving
    if not symbol in fraction(f)[1].free_symbols and f.is_rational_function():
        f = expand(f)

    if f.has(Piecewise):
        f = piecewise_fold(f)
    result = EmptySet()

    if f.expand().is_zero:
        return S.Reals
    elif not f.has(symbol):
        return EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        # if f(x) and g(x) are both finite we can say that the solution of
        # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
        # general. g(x) can grow to infinitely large for the values where
        # f(x) == 0. To be sure that we are not silently allowing any
        # wrong solutions we are using this technique only if both f and g are
        # finite for a finite input.
        result = Union(*[solveset_real(m, symbol) for m in f.args])
    elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
            _is_function_class_equation(HyperbolicFunction, f, symbol):
        result = _solve_real_trig(f, symbol)
    elif f.is_Piecewise:
        result = EmptySet()
        expr_set_pairs = f.as_expr_set_pairs()
        for (expr, in_set) in expr_set_pairs:
            solns = solveset_real(expr, symbol).intersect(in_set)
            result = result + solns
    else:
        lhs, rhs_s = invert_real(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            for equation in equations:
                if equation == f:
                    if any(
                            _has_rational_power(g, symbol)[0]
                            for g in equation.args):
                        result += _solve_radical(equation, symbol,
                                                 solveset_real)
                    elif equation.has(Abs):
                        result += _solve_abs(f, symbol)
                    else:
                        result += _solve_as_rational(
                            equation,
                            symbol,
                            solveset_solver=solveset_real,
                            as_poly_solver=_solve_as_poly_real)
                else:
                    result += solveset_real(equation, symbol)
        else:
            result = ConditionSet(symbol, Eq(f, 0), S.Reals)

    if isinstance(result, FiniteSet):
        result = [
            s for s in result
            if isinstance(s, RootOf) or domain_check(original_eq, symbol, s)
        ]
        return FiniteSet(*result).intersect(S.Reals)
    else:
        return result.intersect(S.Reals)
Esempio n. 9
0
def solveset_complex(f, symbol):
    """ Solve a complex valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` equal to
        zero. An `EmptySet` is returned if no solution is found.

    `solveset_complex` claims to be complete in the solution set that
    it returns.

    Raises
    ======

    NotImplementedError
        The algorithms for to find the solution of the given equation are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.

    See Also
    ========

    solveset_real: solver for real domain

    Examples
    ========

    >>> from sympy import Symbol, exp
    >>> from sympy.solvers.solveset import solveset_complex
    >>> from sympy.abc import x, a, b, c
    >>> solveset_complex(a*x**2 + b*x +c, x)
    {-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)}

    Due to the fact that complex extension of my real valued functions are
    multivariate even some simple equations can have infinitely many solution.

    >>> solveset_complex(exp(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*I*pi), Integers())

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    original_eq = f
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    f = together(f)
    # Without this equations like a + 4*x**2 - E keep oscillating
    # into form  a/4 + x**2 - E/4 and (a + 4*x**2 - E)/4
    if not fraction(f)[1].has(symbol):
        f = expand(f)

    if f.is_zero:
        raise NotImplementedError("S.Complex set is not yet implemented")
    elif not f.has(symbol):
        result = EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        result = Union(*[solveset_complex(m, symbol) for m in f.args])
    else:
        lhs, rhs_s = invert_complex(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            result = EmptySet()
            for equation in equations:
                if equation == f:
                    result += _solve_as_rational(equation, symbol,
                                                 solveset_solver=solveset_complex,
                                                 as_poly_solver=_solve_as_poly_complex)
                else:
                    result += solveset_complex(equation, symbol)
        else:
            raise NotImplementedError

    if isinstance(result, FiniteSet):
        result = [s for s in result
                  if isinstance(s, RootOf)
                  or domain_check(original_eq, symbol, s)]
        return FiniteSet(*result)
    else:
        return result
Esempio n. 10
0
def count_ops(expr, visual=False):
    """
    Return a representation (integer or expression) of the operations in expr.

    If `visual` is False (default) then the sum of the coefficients of the
    visual expression will be returned.

    If `visual` is True then the number of each type of operation is shown
    with the core class types (or their virtual equivalent) multiplied by the
    number of times they occur.

    If expr is an iterable, the sum of the op counts of the
    items will be returned.

    Examples:
        >>> from sympy.abc import a, b, x, y
        >>> from sympy import sin, count_ops

    Although there isn't a SUB object, minus signs are interpreted as
    either negations or subtractions:
        >>> (x - y).count_ops(visual=True)
        SUB
        >>> (-x).count_ops(visual=True)
        NEG

    Here, there are two Adds and a Pow:
        >>> (1 + a + b**2).count_ops(visual=True)
        POW + 2*ADD

    In the following, an Add, Mul, Pow and two functions:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
        ADD + MUL + POW + 2*SIN

    for a total of 5:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
        5

    Note that "what you type" is not always what you get. The expression
    1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
    than two DIVs:
        >>> (1/x/y).count_ops(visual=True)
        DIV + MUL

    The visual option can be used to demonstrate the difference in
    operations for expressions in different forms. Here, the Horner
    representation is compared with the expanded form of a polynomial:
        >>> eq=x*(1 + x*(2 + x*(3 + x)))
        >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
        -MUL + 3*POW

    The count_ops function also handles iterables:
        >>> count_ops([x, sin(x), None, True, x + 2], visual=False)
        2
        >>> count_ops([x, sin(x), None, True, x + 2], visual=True)
        ADD + SIN
        >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
        SIN + 2*ADD

    """
    from sympy.simplify.simplify import fraction

    expr = sympify(expr)
    if isinstance(expr, Expr):

        ops = []
        args = [expr]
        NEG = C.Symbol('NEG')
        DIV = C.Symbol('DIV')
        SUB = C.Symbol('SUB')
        ADD = C.Symbol('ADD')
        def isneg(a):
            c = a.as_coeff_mul()[0]
            return c.is_Number and c.is_negative
        while args:
            a = args.pop()
            if a.is_Rational:
                #-1/3 = NEG + DIV
                if a is not S.One:
                    if a.p < 0:
                        ops.append(NEG)
                    if a.q != 1:
                        ops.append(DIV)
                    continue
            elif a.is_Mul:
                if isneg(a):
                    ops.append(NEG)
                    if a.args[0] is S.NegativeOne:
                        a = a.as_two_terms()[1]
                    else:
                        a = -a
                n, d = fraction(a)
                if n.is_Integer:
                    ops.append(DIV)
                    if n < 0:
                        ops.append(NEG)
                    args.append(d)
                    continue # won't be -Mul but could be Add
                elif d is not S.One:
                    if not d.is_Integer:
                        args.append(d)
                    ops.append(DIV)
                    args.append(n)
                    continue # could be -Mul
            elif a.is_Add:
                aargs = list(a.args)
                negs = 0
                for i, ai in enumerate(aargs):
                    if isneg(ai):
                        negs += 1
                        args.append(-ai)
                        if i > 0:
                            ops.append(SUB)
                    else:
                        args.append(ai)
                        if i > 0:
                            ops.append(ADD)
                if negs == len(aargs): # -x - y = NEG + SUB
                    ops.append(NEG)
                elif isneg(aargs[0]): # -x + y = SUB, but we already recorded an ADD
                    ops.append(SUB - ADD)
                continue
            if a.is_Pow and a.exp is S.NegativeOne:
                ops.append(DIV)
                args.append(a.base) # won't be -Mul but could be Add
                continue
            if (a.is_Mul or
                a.is_Pow or
                a.is_Function or
                isinstance(a, Derivative) or
                isinstance(a, C.Integral)):

                o = C.Symbol(a.func.__name__.upper())
                # count the args
                if (a.is_Mul or
                    isinstance(a, C.LatticeOp)):
                   ops.append(o*(len(a.args) - 1))
                else:
                    ops.append(o)
            args.extend(a.args)

    elif type(expr) is dict:
        ops = [count_ops(k, visual=visual) +
               count_ops(v, visual=visual) for k, v in expr.iteritems()]
    elif hasattr(expr, '__iter__'):
        ops = [count_ops(i, visual=visual) for i in expr]
    elif not isinstance(expr, Basic):
        ops = []
    else: # it's Basic not isinstance(expr, Expr):
        assert isinstance(expr, Basic)
        ops = [count_ops(a, visual=visual) for a in expr.args]

    if not ops:
        if visual:
            return S.Zero
        return 0

    ops = Add(*ops)

    if visual:
        return ops

    if ops.is_Number:
        return int(ops)

    return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))
Esempio n. 11
0
def solveset_real(f, symbol):
    """ Solves a real valued equation.

    Parameters
    ==========

    f : Expr
        The target equation
    symbol : Symbol
        The variable for which the equation is solved

    Returns
    =======

    Set
        A set of values for `symbol` for which `f` is equal to
        zero. An `EmptySet` is returned if no solution is found.
        A `ConditionSet` is returned as unsolved object if algorithms
        to evaluate complete solutions are not yet implemented.

    `solveset_real` claims to be complete in the set of the solution it
    returns.

    Raises
    ======

    NotImplementedError
        Algorithms to solve inequalities in complex domain are
        not yet implemented.
    ValueError
        The input is not valid.
    RuntimeError
        It is a bug, please report to the github issue tracker.


    See Also
    =======

    solveset_complex : solver for complex domain

    Examples
    ========

    >>> from sympy import Symbol, exp, sin, sqrt, I
    >>> from sympy.solvers.solveset import solveset_real
    >>> x = Symbol('x', real=True)
    >>> a = Symbol('a', real=True, finite=True, positive=True)
    >>> solveset_real(x**2 - 1, x)
    {-1, 1}
    >>> solveset_real(sqrt(5*x + 6) - 2 - x, x)
    {-1, 2}
    >>> solveset_real(x - I, x)
    EmptySet()
    >>> solveset_real(x - a, x)
    {a}
    >>> solveset_real(exp(x) - a, x)
    {log(a)}

    * In case the equation has infinitely many solutions an infinitely indexed
      `ImageSet` is returned.

    >>> solveset_real(sin(x) - 1, x)
    ImageSet(Lambda(_n, 2*_n*pi + pi/2), Integers())

    * If the equation is true for any arbitrary value of the symbol a `S.Reals`
      set is returned.

    >>> solveset_real(x - x, x)
    (-oo, oo)

    """
    if not symbol.is_Symbol:
        raise ValueError(" %s is not a symbol" % (symbol))

    f = sympify(f)
    if not isinstance(f, (Expr, Number)):
        raise ValueError(" %s is not a valid sympy expression" % (f))

    original_eq = f
    f = together(f)

    # In this, unlike in solveset_complex, expression should only
    # be expanded when fraction(f)[1] does not contain the symbol
    # for which we are solving
    if not symbol in fraction(f)[1].free_symbols and f.is_rational_function():
        f = expand(f)

    if f.has(Piecewise):
        f = piecewise_fold(f)
    result = EmptySet()

    if f.expand().is_zero:
        return S.Reals
    elif not f.has(symbol):
        return EmptySet()
    elif f.is_Mul and all([_is_finite_with_finite_vars(m) for m in f.args]):
        # if f(x) and g(x) are both finite we can say that the solution of
        # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
        # general. g(x) can grow to infinitely large for the values where
        # f(x) == 0. To be sure that we are not silently allowing any
        # wrong solutions we are using this technique only if both f and g are
        # finite for a finite input.
        result = Union(*[solveset_real(m, symbol) for m in f.args])
    elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \
            _is_function_class_equation(HyperbolicFunction, f, symbol):
        result = _solve_real_trig(f, symbol)
    elif f.is_Piecewise:
        result = EmptySet()
        expr_set_pairs = f.as_expr_set_pairs()
        for (expr, in_set) in expr_set_pairs:
            solns = solveset_real(expr, symbol).intersect(in_set)
            result = result + solns
    else:
        lhs, rhs_s = invert_real(f, 0, symbol)
        if lhs == symbol:
            result = rhs_s
        elif isinstance(rhs_s, FiniteSet):
            equations = [lhs - rhs for rhs in rhs_s]
            for equation in equations:
                if equation == f:
                    if any(_has_rational_power(g, symbol)[0]
                           for g in equation.args):
                        result += _solve_radical(equation,
                                                 symbol,
                                                 solveset_real)
                    elif equation.has(Abs):
                        result += _solve_abs(f, symbol)
                    else:
                        result += _solve_as_rational(equation, symbol,
                                                     solveset_solver=solveset_real,
                                                     as_poly_solver=_solve_as_poly_real)
                else:
                    result += solveset_real(equation, symbol)
        else:
            result = ConditionSet(symbol, Eq(f, 0), S.Reals)

    if isinstance(result, FiniteSet):
        result = [s for s in result
                  if isinstance(s, RootOf)
                  or domain_check(original_eq, symbol, s)]
        return FiniteSet(*result).intersect(S.Reals)
    else:
        return result.intersect(S.Reals)
Esempio n. 12
0
def count_ops(expr, visual=False):
    """
    Return a representation (integer or expression) of the operations in expr.

    If `visual` is False (default) then the sum of the coefficients of the
    visual expression will be returned.

    If `visual` is True then the number of each type of operation is shown
    with the core class types (or their virtual equivalent) multiplied by the
    number of times they occur.

    If expr is an iterable, the sum of the op counts of the
    items will be returned.

    Examples:
        >>> from sympy.abc import a, b, x, y
        >>> from sympy import sin, count_ops

    Although there isn't a SUB object, minus signs are interpreted as
    either negations or subtractions:
        >>> (x - y).count_ops(visual=True)
        SUB
        >>> (-x).count_ops(visual=True)
        NEG

    Here, there are two Adds and a Pow:
        >>> (1 + a + b**2).count_ops(visual=True)
        POW + 2*ADD

    In the following, an Add, Mul, Pow and two functions:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=True)
        ADD + MUL + POW + 2*SIN

    for a total of 5:
        >>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
        5

    Note that "what you type" is not always what you get. The expression
    1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather
    than two DIVs:
        >>> (1/x/y).count_ops(visual=True)
        DIV + MUL

    The visual option can be used to demonstrate the difference in
    operations for expressions in different forms. Here, the Horner
    representation is compared with the expanded form of a polynomial:
        >>> eq=x*(1 + x*(2 + x*(3 + x)))
        >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
        -MUL + 3*POW

    The count_ops function also handles iterables:
        >>> count_ops([x, sin(x), None, True, x + 2], visual=False)
        2
        >>> count_ops([x, sin(x), None, True, x + 2], visual=True)
        ADD + SIN
        >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True)
        SIN + 2*ADD

    """
    from sympy.simplify.simplify import fraction

    expr = sympify(expr)
    if isinstance(expr, Expr):

        ops = []
        args = [expr]
        NEG = C.Symbol('NEG')
        DIV = C.Symbol('DIV')
        SUB = C.Symbol('SUB')
        ADD = C.Symbol('ADD')

        def isneg(a):
            c = a.as_coeff_mul()[0]
            return c.is_Number and c.is_negative

        while args:
            a = args.pop()
            if a.is_Rational:
                #-1/3 = NEG + DIV
                if a is not S.One:
                    if a.p < 0:
                        ops.append(NEG)
                    if a.q != 1:
                        ops.append(DIV)
                    continue
            elif a.is_Mul:
                if isneg(a):
                    ops.append(NEG)
                    if a.args[0] is S.NegativeOne:
                        a = a.as_two_terms()[1]
                    else:
                        a = -a
                n, d = fraction(a)
                if n.is_Integer:
                    ops.append(DIV)
                    if n < 0:
                        ops.append(NEG)
                    args.append(d)
                    continue  # won't be -Mul but could be Add
                elif d is not S.One:
                    if not d.is_Integer:
                        args.append(d)
                    ops.append(DIV)
                    args.append(n)
                    continue  # could be -Mul
            elif a.is_Add:
                aargs = list(a.args)
                negs = 0
                for i, ai in enumerate(aargs):
                    if isneg(ai):
                        negs += 1
                        args.append(-ai)
                        if i > 0:
                            ops.append(SUB)
                    else:
                        args.append(ai)
                        if i > 0:
                            ops.append(ADD)
                if negs == len(aargs):  # -x - y = NEG + SUB
                    ops.append(NEG)
                elif isneg(aargs[0]
                           ):  # -x + y = SUB, but we already recorded an ADD
                    ops.append(SUB - ADD)
                continue
            if a.is_Pow and a.exp is S.NegativeOne:
                ops.append(DIV)
                args.append(a.base)  # won't be -Mul but could be Add
                continue
            if (a.is_Mul or a.is_Pow or a.is_Function
                    or isinstance(a, Derivative) or isinstance(a, C.Integral)):

                o = C.Symbol(a.func.__name__.upper())
                # count the args
                if (a.is_Mul or isinstance(a, C.LatticeOp)):
                    ops.append(o * (len(a.args) - 1))
                else:
                    ops.append(o)
            args.extend(a.args)

    elif type(expr) is dict:
        ops = [
            count_ops(k, visual=visual) + count_ops(v, visual=visual)
            for k, v in expr.iteritems()
        ]
    elif hasattr(expr, '__iter__'):
        ops = [count_ops(i, visual=visual) for i in expr]
    elif not isinstance(expr, Basic):
        ops = []
    else:  # it's Basic not isinstance(expr, Expr):
        assert isinstance(expr, Basic)
        ops = [count_ops(a, visual=visual) for a in expr.args]

    if not ops:
        if visual:
            return S.Zero
        return 0

    ops = Add(*ops)

    if visual:
        return ops

    if ops.is_Number:
        return int(ops)

    return sum(int((a.args or [1])[0]) for a in Add.make_args(ops))