Esempio n. 1
0
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Examples
    ========
    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    (-oo, 0) U (0, oo)
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    [0, pi/2) U (pi/2, pi]
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    [2, 5]
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    (1/2, oo)

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denom == 2:
                constraint = solve_univariate_inequality(
                    atom.base >= 0, symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            if predicate and denom == 2:
                sings = solveset(1 / f, symbol, domain)
                break
        else:
            sings = Intersection(solveset(1 / f, symbol), domain)

    except:
        raise NotImplementedError(
            "Methods for determining the continuous domains"
            " of this function has not been developed.")

    return domain - sings
Esempio n. 2
0
File: util.py Progetto: ataber/sympy
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Examples
    ========
    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    (-oo, 0) U (0, oo)
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    [0, pi/2) U (pi/2, pi]
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    [2, 5]
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    (1/2, oo)

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denom == 2:
                constraint = solve_univariate_inequality(atom.base >= 0,
                                                         symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        for atom in f.atoms(Pow):
            predicate, denom = _has_rational_power(atom, symbol)
            if predicate and denom == 2:
                sings = solveset(1/f, symbol, domain)
                break
        else:
            sings = Intersection(solveset(1/f, symbol), domain)

    except:
        raise NotImplementedError("Methods for determining the continuous domains"
                                  " of this function has not been developed.")

    return domain - sings
Esempio n. 3
0
def test__has_rational_power():
    from sympy.solvers.solveset import _has_rational_power
    assert _has_rational_power(sqrt(2), x)[0] is False
    assert _has_rational_power(x*sqrt(2), x)[0] is False

    assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
    assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3)
    assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6)
Esempio n. 4
0
def test__has_rational_power():
    from sympy.solvers.solveset import _has_rational_power
    assert _has_rational_power(sqrt(2), x)[0] is False
    assert _has_rational_power(x * sqrt(2), x)[0] is False

    assert _has_rational_power(x**2 * sqrt(x), x) == (True, 2)
    assert _has_rational_power(sqrt(2) * x**(S(1) / 3), x) == (True, 3)
    assert _has_rational_power(sqrt(x) * x**(S(1) / 3), x) == (True, 6)
Esempio n. 5
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x', real=True)
    y = exp(x+1/x**2)
    raises(NotImplementedError, lambda: solveset(y**2+y, x))

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Esempio n. 6
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x', real=True)
    y = exp(x+1/x**2)
    raises(NotImplementedError, lambda: solveset(y**2+y, x))

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Esempio n. 7
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x')
    y = exp(x+1/x**2)
    solution = solveset(y**2+y, x, S.Reals)
    unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals)
    assert solution == unsolved_object

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Esempio n. 8
0
def test_improve_coverage():
    from sympy.solvers.solveset import _has_rational_power
    x = Symbol('x')
    y = exp(x+1/x**2)
    solution = solveset(y**2+y, x, S.Reals)
    unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals)
    assert solution == unsolved_object

    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
Esempio n. 9
0
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function
    is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Parameters
    ==========

    f : Expr
        The concerned function.
    symbol : Symbol
        The variable for which the intervals are to be determined.
    domain : Interval
        The domain over which the continuity of the symbol has to be checked.

    Examples
    ========

    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    Union(Interval.open(-oo, 0), Interval.open(0, oo))
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    Interval(2, 5)
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    Interval.open(1/2, oo)

    Returns
    =======

    Interval
        Union of all intervals where the function is continuous.

    Raises
    ======
    NotImplementedError
        If the method to determine continuity of such a function
        has not yet been developed.

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denomin = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denomin == 2:
                constraint = solve_univariate_inequality(atom.base >= 0,
                                                         symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        if f.has(Abs):
            sings = solveset(1/f, symbol, domain) + \
                solveset(denom(together(f)), symbol, domain)
        else:
            for atom in f.atoms(Pow):
                predicate, denomin = _has_rational_power(atom, symbol)
                if predicate and denomin == 2:
                    sings = solveset(1/f, symbol, domain) +\
                        solveset(denom(together(f)), symbol, domain)
                    break
            else:
                sings = Intersection(solveset(1/f, symbol), domain) + \
                    solveset(denom(together(f)), symbol, domain)

    except NotImplementedError:
        import sys
        raise (NotImplementedError("Methods for determining the continuous domains"
                                   " of this function have not been developed."),
               None,
               sys.exc_info()[2])

    return domain - sings
Esempio n. 10
0
def continuous_domain(f, symbol, domain):
    """
    Returns the intervals in the given domain for which the function
    is continuous.
    This method is limited by the ability to determine the various
    singularities and discontinuities of the given function.

    Parameters
    ==========

    f : Expr
        The concerned function.
    symbol : Symbol
        The variable for which the intervals are to be determined.
    domain : Interval
        The domain over which the continuity of the symbol has to be checked.

    Examples
    ========

    >>> from sympy import Symbol, S, tan, log, pi, sqrt
    >>> from sympy.sets import Interval
    >>> from sympy.calculus.util import continuous_domain
    >>> x = Symbol('x')
    >>> continuous_domain(1/x, x, S.Reals)
    Union(Interval.open(-oo, 0), Interval.open(0, oo))
    >>> continuous_domain(tan(x), x, Interval(0, pi))
    Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
    >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
    Interval(2, 5)
    >>> continuous_domain(log(2*x - 1), x, S.Reals)
    Interval.open(1/2, oo)

    Returns
    =======

    Interval
        Union of all intervals where the function is continuous.

    Raises
    ======
    NotImplementedError
        If the method to determine continuity of such a function
        has not yet been developed.

    """
    from sympy.solvers.inequalities import solve_univariate_inequality
    from sympy.solvers.solveset import solveset, _has_rational_power

    if domain.is_subset(S.Reals):
        constrained_interval = domain
        for atom in f.atoms(Pow):
            predicate, denomin = _has_rational_power(atom, symbol)
            constraint = S.EmptySet
            if predicate and denomin == 2:
                constraint = solve_univariate_inequality(
                    atom.base >= 0, symbol).as_set()
                constrained_interval = Intersection(constraint,
                                                    constrained_interval)

        for atom in f.atoms(log):
            constraint = solve_univariate_inequality(atom.args[0] > 0,
                                                     symbol).as_set()
            constrained_interval = Intersection(constraint,
                                                constrained_interval)

        domain = constrained_interval

    try:
        sings = S.EmptySet
        if f.has(Abs):
            sings = solveset(1/f, symbol, domain) + \
                solveset(denom(together(f)), symbol, domain)
        else:
            for atom in f.atoms(Pow):
                predicate, denomin = _has_rational_power(atom, symbol)
                if predicate and denomin == 2:
                    sings = solveset(1/f, symbol, domain) +\
                        solveset(denom(together(f)), symbol, domain)
                    break
            else:
                sings = Intersection(solveset(1/f, symbol), domain) + \
                    solveset(denom(together(f)), symbol, domain)

    except NotImplementedError:
        import sys
        raise (NotImplementedError(
            "Methods for determining the continuous domains"
            " of this function have not been developed."), None,
               sys.exc_info()[2])

    return domain - sings