Esempio n. 1
0
def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S.Zero],
                 [S.Zero, S.NegativeOne, S.One],
                 [Rational(3, 2), Rational(3, 2), S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0],
                                                       [S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0],
                                                       [S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]])
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half
    assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
                Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half)
    assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
                (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
                Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
    assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half
    assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half)
                                                    + (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t*A)

    C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
    assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half
    assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half
Esempio n. 2
0
def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S(0)],
                 [S(0), S(-1), S(1)],
                 [S(3)/2, S(3)/2, S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix([[S(3)/19, S(12)/19, S(4)/19]])

    T2 = Matrix([[-S(1), S(1), S(0)], [S(1), -S(1), S(0)], [S(0), S(1), -S(1)]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix([[S(1)/2 + exp(-2*t)/2, S(1)/2 - exp(-2*t)/2, 0],
                                                       [S(1)/2 - exp(-2*t)/2, S(1)/2 + exp(-2*t)/2, 0],
                                                       [S(1)/2 - exp(-t) + exp(-2*t)/2, S(1)/2 - exp(-2*t)/2, exp(-t)]])
    assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S(1)/2
    assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
                Eq(P(Eq(C2(1), 0)), S(1)/2)) == (S(1)/4 - exp(-2)/4)*(exp(-2)/2 + S(1)/2)
    assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
                (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
                Eq(P(Eq(C2(1), 0)), S(1)/4) & Eq(P(Eq(C2(1), 1)), S(1)/4)) == S(1)
    assert E(C2(S(3)/2), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(-S(3)/2) + S(1)/2
    assert variance(C2(S(3)/2), Eq(C2(0), 1)) == ((S(1)/2 - exp(-3)/2)**2*(exp(-3)/2 + S(1)/2)
                                                    + (-S(1)/2 - exp(-3)/2)**2*(S(1)/2 - exp(-3)/2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S(1)/2)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S(1)/2)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t*A)
Esempio n. 3
0
def test_literal_probability():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x, y, w, z = symbols('x, y, w, z')

    assert Probability(X > 0).doit() == probability(X > 0)
    assert Probability(X > x).doit() == probability(X > x)

    assert Expectation(X).doit() == expectation(X)
    assert Expectation(X**2).doit() == expectation(X**2)
    assert Expectation(x*X) == x*Expectation(X)
    assert Expectation(2*X + 3*Y + z*X*Y) == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y)
    assert Expectation(2*X + 3*Y + z*X*Y, evaluate=False).args == (2*X + 3*Y + z*X*Y,)
    assert Expectation(sin(X)) == Expectation(sin(X), evaluate=False)
    assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y) == 2*x*Expectation(sin(X)*Y) + y*Expectation(X**2) + z*Expectation(X*Y)

    assert Variance(w) == 0
    assert Variance(X).doit() == variance(X)
    assert Variance(X + z) == Variance(X)
    assert Variance(X*Y).args == (Mul(X, Y),)
    assert type(Variance(X*Y)) == Variance
    assert Variance(z*X) == z**2*Variance(X)
    assert Variance(X + Y) == Variance(X) + Variance(Y) + 2*Covariance(X, Y)
    assert Variance(X + Y + Z + W) == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) +
                                       2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) +
                                       2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z))
    assert Variance(X**2).doit() == variance(X**2)
    assert Variance(X**2, evaluate=False) == Variance(X**2)
    assert Variance(x*X**2) == x**2*Variance(X**2)
    assert Variance(sin(X)).args == (sin(X),)
    assert Variance(sin(X), evaluate=False) == Variance(sin(X))
    assert Variance(x*sin(X)) == x**2*Variance(sin(X))

    assert Covariance(w, z) == 0
    assert Covariance(X, w) == 0
    assert Covariance(w, X) == 0
    assert Covariance(X, Y).args == (X, Y)
    assert type(Covariance(X, Y)) == Covariance
    assert Covariance(z*X + 3, Y) == z*Covariance(X, Y)
    assert Covariance(X, X) == Variance(X)
    assert Covariance(z*X + 3, w*Y + 4) == w*z*Covariance(X,Y)
    assert Covariance(X, Y) == Covariance(Y, X)
    assert Covariance(X + Y, Z + W) == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z)
    assert Covariance(x*X + y*Y, z*Z + w*W) == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) +
                                                x*z*Covariance(X, Z) + y*z*Covariance(Y, Z))
    assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W) == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) +
                                                        x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y)))
    assert Covariance(X, X**2) == Covariance(X, X**2, evaluate=False)
    assert Covariance(X, sin(X)) == Covariance(sin(X), X, evaluate=False)
    assert Covariance(X**2, sin(X)*Y) == Covariance(sin(X)*Y, X**2, evaluate=False)
Esempio n. 4
0
def test_ContinuousMarkovChain():
    T1 = Matrix([
        [S(-2), S(2), S.Zero],
        [S.Zero, S.NegativeOne, S.One],
        [Rational(3, 2), Rational(3, 2), S(-3)],
    ])
    C1 = ContinuousMarkovChain("C", [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix(
        [[Rational(3, 19), Rational(12, 19),
          Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero],
                 [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain("C", [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols("t", positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix([
        [S.Half + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2, 0],
        [S.Half - exp(-2 * t) / 2, S.Half + exp(-2 * t) / 2, 0],
        [
            S.Half - exp(-t) + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2,
            exp(-t)
        ],
    ])
    assert P(Eq(C2(1), 1), Eq(C2(0), 1),
             evaluate=False) == Probability(Eq(C2(1), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2) / 2 + S.Half
    assert P(
        Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
        Eq(P(Eq(C2(1), 0)),
           S.Half)) == (Rational(1, 4) - exp(-2) / 4) * (exp(-2) / 2 + S.Half)
    assert (P(
        Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2))
        | (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
        Eq(P(Eq(C2(1), 0)), Rational(1, 4))
        & Eq(P(Eq(C2(1), 1)), Rational(1, 4)),
    ) is S.One)
    assert (E(C2(Rational(3, 2)),
              Eq(C2(0),
                 2)) == -exp(-3) / 2 + 2 * exp(Rational(-3, 2)) + S.Half)
    assert variance(C2(Rational(3, 2)), Eq(
        C2(0),
        1)) == ((S.Half - exp(-3) / 2)**2 * (exp(-3) / 2 + S.Half) +
                (Rational(-1, 2) - exp(-3) / 2)**2 * (S.Half - exp(-3) / 2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)),
                              S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol("G", 3, 3)
    CS1 = ContinuousMarkovChain("C", [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t * A)
Esempio n. 5
0
def test_issue_12237():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    U = P(X > 0, X)
    V = P(Y < 0, X)
    assert U == Probability(X > 0, X)
    assert str(V) == '1/2'
Esempio n. 6
0
def test_WienerProcess():
    X = WienerProcess("X")
    assert X.state_space == S.Reals
    assert X.index_set == Interval(0, oo)

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == NormalDistribution(0, sqrt(t))
    with warns_deprecated_sympy():
        X.distribution(X(t))
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-2))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)),
               sqrt(6) * exp(-X(2)**2 / 4) * exp(-X(3)**2 / 6) / (12 * pi)))
    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)),
               sqrt(6) * exp(-X(4)**2 / 8) * exp(-X(6)**2 / 12) / (24 * pi)))

    assert P(X(t) < 3).simplify() == erf(3 * sqrt(2) /
                                         (2 * sqrt(t))) / 2 + S(1) / 2
    assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
                erf(sqrt(2)/2)/2

    # Equivalent to P(X(1)>1)**4
    assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
        Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
        & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
        (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16

    # Contains an overlapping interval so, return Probability
    assert P((X(t) < 2) & (X(d) > 3),
             Contains(t, Interval.Lopen(0, 2))
             & Contains(d, Interval.Ropen(2, 4))) == Probability(
                 (X(d) > 3) & (X(t) < 2),
                 Contains(d, Interval.Ropen(2, 4))
                 & Contains(t, Interval.Lopen(0, 2)))

    assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
        Contains(d, Interval.Lopen(7, 8))).simplify()) == \
                '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
    # Distribution has mean 0 at each timestamp
    assert E(X(t)) == 0
    assert E(
        x * (X(t) + X(d)) * (X(t)**2 + X(d)**2),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Ropen(1, 2))) == Expectation(
            x * (X(d) + X(t)) * (X(d)**2 + X(t)**2),
            Contains(d, Interval.Ropen(1, 2))
            & Contains(t, Interval.Lopen(0, 1)))
    assert E(X(t) + x * E(X(3))) == 0

    #test issue 20078
    assert (2 * X(t) + 3 * X(t)).simplify() == 5 * X(t)
    assert (2 * X(t) - 3 * X(t)).simplify() == -X(t)
    assert (2 * (0.25 * X(t))).simplify() == 0.5 * X(t)
    assert (2 * X(t) * 0.25 * X(t)).simplify() == 0.5 * X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1) * X(t)**2
Esempio n. 7
0
def probability(condition,
                given_condition=None,
                numsamples=None,
                evaluate=True,
                **kwargs):
    """
    Probability that a condition is true, optionally given a second condition

    Parameters
    ==========

    condition : Combination of Relationals containing RandomSymbols
        The condition of which you want to compute the probability
    given_condition : Combination of Relationals containing RandomSymbols
        A conditional expression. P(X > 1, X > 0) is expectation of X > 1
        given X > 0
    numsamples : int
        Enables sampling and approximates the probability with this many samples
    evaluate : Bool (defaults to True)
        In case of continuous systems return unevaluated integral

    Examples
    ========

    >>> from sympy.stats import P, Die
    >>> from sympy import Eq
    >>> X, Y = Die('X', 6), Die('Y', 6)
    >>> P(X > 3)
    1/2
    >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
    1/4
    >>> P(X > Y)
    5/12
    """

    kwargs['numsamples'] = numsamples
    from sympy.stats.symbolic_probability import Probability
    if evaluate:
        return Probability(condition, given_condition).doit(**kwargs)
    ### TODO: Remove the user warnings in the future releases
    message = (
        "Since version 1.7, using `evaluate=False` returns `Probability` "
        "object. If you want unevaluated Integral/Sum use "
        "`P(condition, given_condition, evaluate=False).rewrite(Integral)`")
    warnings.warn(filldedent(message))
    return Probability(condition, given_condition)
Esempio n. 8
0
def test_issue_12237():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    U = P(X > 0, X)
    V = P(Y < 0, X)
    W = P(X + Y > 0, X)
    assert W == Probability(X + Y > 0, X)
    assert U == BernoulliDistribution(S(1) / 2, S(0), S(1))
    assert str(V) == '1/2'
    def probability(self,
                    condition,
                    given_condition=None,
                    evaluate=True,
                    **kwargs):
        """
        Computes probability.

        Parameters
        ==========

        condition: Relational
                Condition for which probability has to be computed. Must
                contain a RandomIndexedSymbol of the process.
        given_condition: Relational/And
                The given conditions under which computations should be done.

        Returns
        =======

        Probability of the condition.

        """
        new_condition, new_givencondition = self._rvindexed_subs(
            condition, given_condition)

        if isinstance(new_givencondition, RandomSymbol):
            condrv = random_symbols(new_condition)
            if len(condrv) == 1 and condrv[0] == new_givencondition:
                return BernoulliDistribution(self.probability(new_condition),
                                             0, 1)

            if any([dependent(rv, new_givencondition) for rv in condrv]):
                return Probability(new_condition, new_givencondition)
            else:
                return self.probability(new_condition)

        if new_givencondition is not None and \
                not isinstance(new_givencondition, (Relational, Boolean)):
            raise ValueError(
                "%s is not a relational or combination of relationals" %
                (new_givencondition))
        if new_givencondition == False:
            return S.Zero
        if new_condition == True:
            return S.One
        if new_condition == False:
            return S.Zero
        if not isinstance(new_condition, (Relational, Boolean)):
            raise ValueError(
                "%s is not a relational or combination of relationals" %
                (new_condition))
        if new_givencondition is not None:  # If there is a condition
            # Recompute on new conditional expr
            return self.probability(
                given(new_condition, new_givencondition, **kwargs), **kwargs)
        return pspace(new_condition).probability(new_condition, **kwargs)
Esempio n. 10
0
 def probability(self, condition):
     _domain = self.restricted_domain(condition)
     if condition == False or _domain is S.EmptySet:
         return S.Zero
     if condition == True or _domain == self.set:
         return S.One
     try:
         return self.eval_prob(_domain)
     except NotImplementedError:
         return Probability(condition)
Esempio n. 11
0
def probability(condition,
                given_condition=None,
                numsamples=None,
                evaluate=True,
                **kwargs):
    """
    Probability that a condition is true, optionally given a second condition

    Parameters
    ==========

    condition : Combination of Relationals containing RandomSymbols
        The condition of which you want to compute the probability
    given_condition : Combination of Relationals containing RandomSymbols
        A conditional expression. P(X > 1, X > 0) is expectation of X > 1
        given X > 0
    numsamples : int
        Enables sampling and approximates the probability with this many samples
    evaluate : Bool (defaults to True)
        In case of continuous systems return unevaluated integral

    Examples
    ========

    >>> from sympy.stats import P, Die
    >>> from sympy import Eq
    >>> X, Y = Die('X', 6), Die('Y', 6)
    >>> P(X > 3)
    1/2
    >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
    1/4
    >>> P(X > Y)
    5/12
    """

    kwargs['numsamples'] = numsamples
    from sympy.stats.symbolic_probability import Probability
    if evaluate:
        return Probability(condition, given_condition).doit(**kwargs)
    return Probability(condition, given_condition).rewrite(
        Integral)  # will return Sum in case of discrete RV
Esempio n. 12
0
 def probability(self, condition):
     complement = isinstance(condition, Ne)
     if complement:
         condition = Eq(condition.args[0], condition.args[1])
     _domain = self.where(condition).set
     if condition == False or _domain is S.EmptySet:
         return S.Zero
     if condition == True or _domain == self.set:
         return S.One
     prob = self.eval_prob(_domain)
     if prob == None:
         prob = Probability(condition)
     return prob if not complement else S.One - prob
Esempio n. 13
0
 def probability(self, condition):
     complement = isinstance(condition, Ne)
     if complement:
         condition = Eq(condition.args[0], condition.args[1])
     _domain = self.restricted_domain(condition)
     if condition == False or _domain is S.EmptySet:
         return S.Zero
     if condition == True or _domain == self.set:
         return S.One
     try:
         prob = self.eval_prob(_domain)
         return prob if not complement else S.One - prob
     except NotImplementedError:
         return Probability(condition)
Esempio n. 14
0
File: drv.py Progetto: yatna/sympy
 def probability(self, condition):
     complement = isinstance(condition, Ne)
     if complement:
         condition = Eq(condition.args[0], condition.args[1])
     try:
         _domain = self.where(condition).set
         if condition == False or _domain is S.EmptySet:
             return S.Zero
         if condition == True or _domain == self.domain.set:
             return S.One
         prob = self.eval_prob(_domain)
     except NotImplementedError:
         from sympy.stats.rv import density
         expr = condition.lhs - condition.rhs
         dens = density(expr)
         if not isinstance(dens, DiscreteDistribution):
             dens = DiscreteDistributionHandmade(dens)
         z = Dummy('z', real = True)
         space = SingleDiscretePSpace(z, dens)
         prob = space.probability(condition.__class__(space.value, 0))
     if (prob == None):
         prob = Probability(condition)
     return prob if not complement else S.One - prob
Esempio n. 15
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))
    raises(NotImplementedError, lambda: X.communication_classes())
    raises(NotImplementedError, lambda: X.canonical_form())
    raises(NotImplementedError, lambda: X.decompose())

    nz = Symbol('n', integer=True)
    TZ = MatrixSymbol('M', nz, nz)
    SZ = Range(nz)
    YZ = DiscreteMarkovChain('Y', SZ, TZ)
    assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
                    Tuple(S(1), exp(sym), Str('World'), sympify=False),
                    Range(-1, 5, 2), [rainy, cloudy, sunny]]
    chains = [
        DiscreteMarkovChain("Y", state_space) for state_space in state_spaces
    ]

    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(
            *state_spaces[i])
        assert Y.number_of_states == 3

        with ignore_warnings(
                UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2),
                     evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t - 1) / 2)

    # pass name and transition_probabilities
    chains = [
        DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
        DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
        DiscreteMarkovChain("Y",
                            trans_probs=Matrix([[pi, 1 - pi], [sym, 1 - sym]]))
    ]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableMatrix)

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] +
             TS[1, 2] * TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(
        YS[1],
        1)) == TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] + TS[1, 2] * TS[2, 2]
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3.fundamental_matrix() == ImmutableMatrix(
        [[176, 81, -132], [36, 141, -52], [-44, -39, 208]]) / 125
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    assert Y2.canonical_form() == ([0, 1, 2], TO2)
    assert Y3.canonical_form() == ([0, 1, 2], TO3)
    assert Y2.decompose() == ([0, 1,
                               2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
    assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3,
                                                     []), Matrix(0, 0, []))
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    assert Y4.is_ergodic() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    assert Y5.stationary_distribution(condition_set=True).subs(
        TS1, TO4).contains(w).doit() == S.true
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])
    TO7 = Matrix([[Rational(1, 2),
                   Rational(1, 4),
                   Rational(1, 4)], [Rational(1, 2), 0,
                                     Rational(1, 2)],
                  [Rational(1, 4),
                   Rational(1, 4),
                   Rational(1, 2)]])
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    assert Y7.is_absorbing_chain() == False
    assert Y7.fundamental_matrix() == ImmutableMatrix(
        [[Rational(86, 75),
          Rational(1, 25),
          Rational(-14, 75)],
         [Rational(2, 25), Rational(21, 25),
          Rational(2, 25)],
         [Rational(-14, 75),
          Rational(1, 25),
          Rational(86, 75)]])

    # test for zero-sized matrix functionality
    X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
    assert X.number_of_states == 0
    assert X.stationary_distribution() == Matrix([[]])
    assert X.communication_classes() == []
    assert X.canonical_form() == ([], Matrix([[]]))
    assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
    assert X.is_regular() == False
    assert X.is_ergodic() == False

    # test communication_class
    # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
    # tutorial 2.pdf
    TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0],
                  [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]]) / 10
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    tuples = Y7.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1, 3], [0, 2], [4])
    assert recurrence == (True, False, False)
    assert periods == (2, 1, 1)

    TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6],
                  [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]
                  ]) / 10
    Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
    tuples = Y8.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3], [1, 2, 5, 4])
    assert recurrence == (True, False)
    assert periods == (2, 2)

    TO9 = Matrix(
        [[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
         [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
         [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
         [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]]) / 10
    Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
    tuples = Y9.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
    assert recurrence == (True, True, False, True, False)
    assert periods == (1, 1, 1, 1, 1)

    # test canonical form
    # see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    # example 11.13
    T = Matrix([[1, 0, 0, 0, 0], [S(1) / 2, 0, S(1) / 2, 0, 0],
                [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0,
                                                S(1) / 2, 0,
                                                S(1) / 2], [0, 0, 0, 0,
                                                            S(1)]])
    DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
    states, A, B, C = DW.decompose()
    assert states == [0, 4, 1, 2, 3]
    assert A == Matrix([[1, 0], [0, 1]])
    assert B == Matrix([[S(1) / 2, 0], [0, 0], [0, S(1) / 2]])
    assert C == Matrix([[0, S(1) / 2, 0], [S(1) / 2, 0, S(1) / 2],
                        [0, S(1) / 2, 0]])
    states, new_matrix = DW.canonical_form()
    assert states == [0, 4, 1, 2, 3]
    assert new_matrix == Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0],
                                 [S(1) / 2, 0, 0, S(1) / 2, 0],
                                 [0, 0, S(1) / 2, 0,
                                  S(1) / 2], [0, S(1) / 2, 0,
                                              S(1) / 2, 0]])

    # test regular and ergodic
    # https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
    T = Matrix([[0, 4, 0, 0, 0], [1, 0, 3, 0, 0], [0, 2, 0, 2, 0],
                [0, 0, 3, 0, 1], [0, 0, 0, 4, 0]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    T = Matrix([[0, 1], [1, 0]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_regular()
    assert X.is_ergodic()
    # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
    T = Matrix([[2, 1, 1], [2, 0, 2], [1, 1, 2]]) / 4
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()
    # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
    T = Matrix([[1, 1], [1, 1]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_regular()
    assert X.is_ergodic()

    # test is_absorbing_chain
    T = Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]])
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert not X.is_absorbing_chain()
    # https://en.wikipedia.org/wiki/Absorbing_Markov_chain
    T = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()
    T = Matrix([[2, 0, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0],
                [0, 0, 1, 0, 1], [0, 0, 0, 0, 2]]) / 2
    X = DiscreteMarkovChain('X', trans_probs=T)
    assert X.is_absorbing_chain()

    # test custom state space
    Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
    tuples = Y10.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1], [2, 3])
    assert recurrence == (True, False)
    assert periods == (1, 1)
    assert Y10.canonical_form() == ([1, 2, 3], TO2)
    assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3,
                                                             0:1], TO2[1:3,
                                                                       1:3])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1]**2, Eq(X[0], 1)) -
            (a**2 / 3 + 2 * c**2 / 3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) -
            (2 * (-a / 3 + c / 3)**2 / 3 +
             (2 * a / 3 - 2 * c / 3)**2 / 3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))

    #testing queries with multiple RandomIndexedSymbols
    T = Matrix([[Rational(5, 10),
                 Rational(3, 10),
                 Rational(2, 10)],
                [Rational(2, 10),
                 Rational(7, 10),
                 Rational(1, 10)],
                [Rational(3, 10),
                 Rational(3, 10),
                 Rational(4, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
    assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
    assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6)
    assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)),
                 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14)
    assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)),
                 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14)
    assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)),
                 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14)
    assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1))
    assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1))
    assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    T = Matrix([[Rational(1, 10),
                 Rational(4, 10),
                 Rational(5, 10)],
                [Rational(3, 10),
                 Rational(4, 10),
                 Rational(3, 10)],
                [Rational(7, 10),
                 Rational(2, 10),
                 Rational(1, 10)]])
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    query = P(Eq(Y[a], b), Eq(Y[c], d))
    assert query.subs({
        a: 10,
        b: 2,
        c: 5,
        d: 1
    }).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4)
    assert query.subs({
        a: 15,
        b: 0,
        c: 10,
        d: 1
    }).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4)
    query_gt = P(Gt(Y[a], b), Eq(Y[c], d))
    query_le = P(Le(Y[a], b), Eq(Y[c], d))
    assert query_gt.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() + query_le.subs({
        a: 5,
        b: 2,
        c: 1,
        d: 0
    }).evalf() == 1
    query_ge = P(Ge(Y[a], b), Eq(Y[c], d))
    query_lt = P(Lt(Y[a], b), Eq(Y[c], d))
    assert query_ge.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() + query_lt.subs({
        a: 4,
        b: 1,
        c: 0,
        d: 2
    }).evalf() == 1

    #test issue 20078
    assert (2 * Y[1] + 3 * Y[1]).simplify() == 5 * Y[1]
    assert (2 * Y[1] - 3 * Y[1]).simplify() == -Y[1]
    assert (2 * (0.25 * Y[1])).simplify() == 0.5 * Y[1]
    assert ((2 * Y[1]) * (0.25 * Y[1])).simplify() == 0.5 * Y[1]**2
    assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1) * Y[1]**2
Esempio n. 16
0
def probability(condition,
                given_condition=None,
                numsamples=None,
                evaluate=True,
                **kwargs):
    """
    Probability that a condition is true, optionally given a second condition

    Parameters
    ==========

    condition : Combination of Relationals containing RandomSymbols
        The condition of which you want to compute the probability
    given_condition : Combination of Relationals containing RandomSymbols
        A conditional expression. P(X > 1, X > 0) is expectation of X > 1
        given X > 0
    numsamples : int
        Enables sampling and approximates the probability with this many samples
    evaluate : Bool (defaults to True)
        In case of continuous systems return unevaluated integral

    Examples
    ========

    >>> from sympy.stats import P, Die
    >>> from sympy import Eq
    >>> X, Y = Die('X', 6), Die('Y', 6)
    >>> P(X > 3)
    1/2
    >>> P(Eq(X, 5), X > 2) # Probability that X == 5 given that X > 2
    1/4
    >>> P(X > Y)
    5/12
    """

    condition = sympify(condition)
    given_condition = sympify(given_condition)

    if condition.has(RandomIndexedSymbol):
        return pspace(condition).probability(condition, given_condition,
                                             evaluate, **kwargs)

    if isinstance(given_condition, RandomSymbol):
        condrv = random_symbols(condition)
        if len(condrv) == 1 and condrv[0] == given_condition:
            from sympy.stats.frv_types import BernoulliDistribution
            return BernoulliDistribution(probability(condition), 0, 1)
        if any([dependent(rv, given_condition) for rv in condrv]):
            from sympy.stats.symbolic_probability import Probability
            return Probability(condition, given_condition)
        else:
            return probability(condition)

    if given_condition is not None and \
            not isinstance(given_condition, (Relational, Boolean)):
        raise ValueError(
            "%s is not a relational or combination of relationals" %
            (given_condition))
    if given_condition == False:
        return S.Zero
    if not isinstance(condition, (Relational, Boolean)):
        raise ValueError(
            "%s is not a relational or combination of relationals" %
            (condition))
    if condition is S.true:
        return S.One
    if condition is S.false:
        return S.Zero

    if numsamples:
        return sampling_P(condition,
                          given_condition,
                          numsamples=numsamples,
                          **kwargs)
    if given_condition is not None:  # If there is a condition
        # Recompute on new conditional expr
        return probability(given(condition, given_condition, **kwargs),
                           **kwargs)

    # Otherwise pass work off to the ProbabilitySpace
    result = pspace(condition).probability(condition, **kwargs)
    if evaluate and hasattr(result, 'doit'):
        return result.doit()
    else:
        return result
Esempio n. 17
0
    def probability(self,
                    condition,
                    given_condition=None,
                    evaluate=True,
                    **kwargs):
        """
        Handles probability queries for Markov process.

        Parameters
        ==========

        condition: Relational
        given_condition: Relational/And

        Returns
        =======
        Probability
            If the information is not sufficient.
        Expr
            In all other cases.

        Note
        ====
        Any information passed at the time of query overrides
        any information passed at the time of object creation like
        transition probabilities, state space.
        Pass the transition matrix using TransitionMatrixOf,
        generator matrix using GeneratorMatrixOf and state space
        using StochasticStateSpaceOf in given_condition using & or And.
        """
        check, mat, state_space, new_given_condition = \
            self._preprocess(given_condition, evaluate)

        if check:
            return Probability(condition, new_given_condition)

        if isinstance(self, ContinuousMarkovChain):
            trans_probs = self.transition_probabilities(mat)
        elif isinstance(self, DiscreteMarkovChain):
            trans_probs = mat

        if isinstance(condition, Relational):
            rv, states = (list(condition.atoms(RandomIndexedSymbol))[0],
                          condition.as_set())
            if isinstance(new_given_condition, And):
                gcs = new_given_condition.args
            else:
                gcs = (new_given_condition, )
            grvs = new_given_condition.atoms(RandomIndexedSymbol)

            min_key_rv = None
            for grv in grvs:
                if grv.key <= rv.key:
                    min_key_rv = grv
            if min_key_rv == None:
                return Probability(condition)

            prob, gstate = dict(), None
            for gc in gcs:
                if gc.has(min_key_rv):
                    if gc.has(Probability):
                        p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \
                                    else (gc.lhs, gc.rhs)
                        gr = gp.args[0]
                        gset = Intersection(gr.as_set(), state_space)
                        gstate = list(gset)[0]
                        prob[gset] = p
                    else:
                        _, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \
                                    else (gc.rhs.key, gc.lhs)

            if any(
                (k not in self.index_set) for k in (rv.key, min_key_rv.key)):
                raise IndexError(
                    "The timestamps of the process are not in it's index set.")
            states = Intersection(states, state_space)
            for state in Union(states, FiniteSet(gstate)):
                if Ge(state, mat.shape[0]) == True:
                    raise IndexError(
                        "No information is available for (%s, %s) in "
                        "transition probabilities of shape, (%s, %s). "
                        "State space is zero indexed." %
                        (gstate, state, mat.shape[0], mat.shape[1]))
            if prob:
                gstates = Union(*prob.keys())
                if len(gstates) == 1:
                    gstate = list(gstates)[0]
                    gprob = list(prob.values())[0]
                    prob[gstates] = gprob
                elif len(gstates) == len(state_space) - 1:
                    gstate = list(state_space - gstates)[0]
                    gprob = S(1) - sum(prob.values())
                    prob[state_space - gstates] = gprob
                else:
                    raise ValueError("Conflicting information.")
            else:
                gprob = S(1)

            if min_key_rv == rv:
                return sum([prob[FiniteSet(state)] for state in states])
            if isinstance(self, ContinuousMarkovChain):
                return gprob * sum([
                    trans_probs(rv.key - min_key_rv.key).__getitem__(
                        (gstate, state)) for state in states
                ])
            if isinstance(self, DiscreteMarkovChain):
                return gprob * sum([(trans_probs
                                     **(rv.key - min_key_rv.key)).__getitem__(
                                         (gstate, state)) for state in states])

        if isinstance(condition, Not):
            expr = condition.args[0]
            return S(1) - self.probability(expr, given_condition, evaluate, **
                                           kwargs)

        if isinstance(condition, And):
            compute_later, state2cond, conds = [], dict(), condition.args
            for expr in conds:
                if isinstance(expr, Relational):
                    ris = list(expr.atoms(RandomIndexedSymbol))[0]
                    if state2cond.get(ris, None) is None:
                        state2cond[ris] = S.true
                    state2cond[ris] &= expr
                else:
                    compute_later.append(expr)
            ris = []
            for ri in state2cond:
                ris.append(ri)
                cset = Intersection(state2cond[ri].as_set(), state_space)
                if len(cset) == 0:
                    return S.Zero
                state2cond[ri] = cset.as_relational(ri)
            sorted_ris = sorted(ris, key=lambda ri: ri.key)
            prod = self.probability(state2cond[sorted_ris[0]], given_condition,
                                    evaluate, **kwargs)
            for i in range(1, len(sorted_ris)):
                ri, prev_ri = sorted_ris[i], sorted_ris[i - 1]
                if not isinstance(state2cond[ri], Eq):
                    raise ValueError(
                        "The process is in multiple states at %s, unable to determine the probability."
                        % (ri))
                mat_of = TransitionMatrixOf(self, mat) if isinstance(
                    self, DiscreteMarkovChain) else GeneratorMatrixOf(
                        self, mat)
                prod *= self.probability(
                    state2cond[ri], state2cond[prev_ri]
                    & mat_of
                    & StochasticStateSpaceOf(self, state_space), evaluate,
                    **kwargs)
            for expr in compute_later:
                prod *= self.probability(expr, given_condition, evaluate,
                                         **kwargs)
            return prod

        if isinstance(condition, Or):
            return sum([
                self.probability(expr, given_condition, evaluate, **kwargs)
                for expr in condition.args
            ])

        raise NotImplementedError(
            "Mechanism for handling (%s, %s) queries hasn't been "
            "implemented yet." % (expr, condition))
Esempio n. 18
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert X.state_space == S.Reals
    assert X.index_set == S.Naturals0
    assert X.transition_probabilities == None
    t = symbols("t", positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))

    # pass name and state_space
    Y = DiscreteMarkovChain("Y", [1, 2, 3])
    assert Y.transition_probabilities == None
    assert Y.state_space == FiniteSet(1, 2, 3)
    assert P(Eq(Y[2], 1), Eq(Y[0], 2)) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol("T", 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", [0, 1, 2], TS)
    assert YS._transient2transient() == None
    assert YS._transient2absorbing() == None
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (str(P(Eq(YS[3], 2), Eq(
        YS[1], 1))) == "T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]")
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(YS[1], 1)) is S.Zero
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    assert E(Y[3], evaluate=False) == Expectation(Y[3])
    assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol("T", 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))),
    )
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols("M")))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol("T", 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([
        [Rational(1, 4), Rational(3, 4), 0],
        [Rational(1, 3), Rational(1, 3),
         Rational(1, 3)],
        [0, Rational(1, 4), Rational(3, 4)],
    ])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1),
    ) == Rational(1, 16)
    assert (P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
              TransitionMatrixOf(Y, TO1)) == Probability(Eq(Y[0], 0)) / 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1),
    ) == Rational(1, 4)
    assert (P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2)
        & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1),
    ) is S.Zero)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([
        [S.One, 0, 0],
        [Rational(1, 3), Rational(1, 3),
         Rational(1, 3)],
        [0, Rational(1, 4), Rational(3, 4)],
    ])
    TO3 = Matrix([
        [Rational(1, 4), Rational(3, 4), 0],
        [Rational(1, 3), Rational(1, 3),
         Rational(1, 3)],
        [0, Rational(1, 4), Rational(3, 4)],
    ])
    Y2 = DiscreteMarkovChain("Y", trans_probs=TO2)
    Y3 = DiscreteMarkovChain("Y", trans_probs=TO3)
    assert Y3._transient2absorbing() == None
    raises(ValueError, lambda: Y3.fundamental_matrix())
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    TO4 = Matrix([
        [Rational(1, 5), Rational(2, 5),
         Rational(2, 5)],
        [Rational(1, 10), S.Half, Rational(2, 5)],
        [Rational(3, 5), Rational(3, 10),
         Rational(1, 10)],
    ])
    Y4 = DiscreteMarkovChain("Y", trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    TS1 = MatrixSymbol("T", 3, 3)
    Y5 = DiscreteMarkovChain("Y", trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    TO6 = Matrix([
        [S.One, 0, 0, 0, 0],
        [S.Half, 0, S.Half, 0, 0],
        [0, S.Half, 0, S.Half, 0],
        [0, 0, S.Half, 0, S.Half],
        [0, 0, 0, 0, 1],
    ])
    Y6 = DiscreteMarkovChain("Y", trans_probs=TO6)
    assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0],
                                                         [0, S.Half]])
    assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0],
                                                         [S.Half, 0, S.Half],
                                                         [0, S.Half, 0]])
    assert Y6.fundamental_matrix() == ImmutableMatrix([
        [Rational(3, 2), S.One, S.Half],
        [S.One, S(2), S.One],
        [S.Half, S.One, Rational(3, 2)],
    ])
    assert Y6.absorbing_probabilites() == ImmutableMatrix([
        [Rational(3, 4), Rational(1, 4)],
        [S.Half, S.Half],
        [Rational(1, 4), Rational(3, 4)],
    ])

    # testing miscellaneous queries
    T = Matrix([
        [S.Half, Rational(1, 4), Rational(1, 4)],
        [Rational(1, 3), 0, Rational(2, 3)],
        [S.Half, S.Half, 0],
    ])
    X = DiscreteMarkovChain("X", [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4)),
    ) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
Esempio n. 19
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert isinstance(X.index_of, Range)
    assert not X._is_numeric
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym = symbols('a', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
                    Tuple(1, exp(sym), Str('World'), sympify=False),
                    Range(-1, 7, 2)]
    chains = [
        DiscreteMarkovChain("Y", state_spaces[0]),
        DiscreteMarkovChain("Y", state_spaces[1]),
        DiscreteMarkovChain("Y", state_spaces[2])
    ]
    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == Tuple(*state_spaces[i])
        assert Y.number_of_states == 3
        assert not Y._is_numeric  # because no transition matrix is provided
        assert Y.index_of[state_spaces[i][0]] == 0
        assert Y.index_of[state_spaces[i][1]] == 1
        assert Y.index_of[state_spaces[i][2]] == 2

        with ignore_warnings(
                UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2),
                     evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t - 1) / 2)
    raises(NotImplementedError, lambda: Y.index_of)

    # pass name and transition_probabilities
    chains = [
        DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
        DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
        DiscreteMarkovChain("Y",
                            trans_probs=Matrix([[pi, 1 - pi], [sym, 1 - sym]]))
    ]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableDenseMatrix)
        assert isinstance(Z.state_space, Tuple)
        assert Z._is_numeric

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert YS._transient2transient() == None
    assert YS._transient2absorbing() == None
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] +
             TS[1, 2] * TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(YS[1], 1)) is S.Zero
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3._transient2absorbing() == None
    raises(ValueError, lambda: Y3.fundamental_matrix())
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0],
                                                         [0, S.Half]])
    assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0],
                                                         [S.Half, 0, S.Half],
                                                         [0, S.Half, 0]])
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1]**2, Eq(X[0], 1)) -
            (a**2 / 3 + 2 * c**2 / 3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) -
            (2 * (-a / 3 + c / 3)**2 / 3 +
             (2 * a / 3 - 2 * c / 3)**2 / 3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
Esempio n. 20
0
    def probability(self,
                    condition,
                    given_condition=None,
                    evaluate=True,
                    **kwargs):
        """
        Handles probability queries for discrete Markov chains.

        Parameters
        ==========

        condition: Relational
        given_condition: Relational/And

        Returns
        =======

        Probability
            If the transition probabilities are not available
        Expr
            If the transition probabilities is MatrixSymbol or Matrix

        Note
        ====

        Any information passed at the time of query overrides
        any information passed at the time of object creation like
        transition probabilities, state space.

        Pass the transition matrix using TransitionMatrixOf and state space
        using StochasticStateSpaceOf in given_condition using & or And.
        """

        check, trans_probs, state_space, given_condition = \
            self._preprocess(given_condition, evaluate)

        if check:
            return Probability(condition, given_condition)

        if isinstance(condition, Eq) and \
            isinstance(given_condition, Eq) and \
            len(given_condition.atoms(RandomSymbol)) == 1:
            # handles simple queries like P(Eq(X[i], dest_state), Eq(X[i], init_state))
            lhsc, rhsc = condition.lhs, condition.rhs
            lhsg, rhsg = given_condition.lhs, given_condition.rhs
            if not isinstance(lhsc, RandomIndexedSymbol):
                lhsc, rhsc = (rhsc, lhsc)
            if not isinstance(lhsg, RandomIndexedSymbol):
                lhsg, rhsg = (rhsg, lhsg)
            keyc, statec, keyg, stateg = (lhsc.key, rhsc, lhsg.key, rhsg)
            if Lt(stateg, trans_probs.shape[0]) == False or Lt(
                    statec, trans_probs.shape[1]) == False:
                raise IndexError(
                    "No information is available for (%s, %s) in "
                    "transition probabilities of shape, (%s, %s). "
                    "State space is zero indexed." %
                    (stateg, statec, trans_probs.shape[0],
                     trans_probs.shape[1]))
            if keyc < keyg:
                raise ValueError(
                    "Incorrect given condition is given, probability "
                    "of past state cannot be computed from future state.")
            nsteptp = trans_probs**(keyc - keyg)
            if hasattr(nsteptp, "__getitem__"):
                return nsteptp.__getitem__((stateg, statec))
            return Indexed(nsteptp, stateg, statec)

        info = TransitionMatrixOf(self, trans_probs) & StochasticStateSpaceOf(
            self, state_space)
        new_gc = given_condition & info

        if isinstance(condition, And):
            # handle queries like,
            # P(Eq(X[i+k], s1) & Eq(X[i+m], s2) . . . & Eq(X[i], sn), Eq(P(Eq(X[i], si)), prob))
            conds = condition.args
            idx2state = dict()
            for cond in conds:
                idx, state = (cond.lhs, cond.rhs) if isinstance(cond.lhs, RandomIndexedSymbol) else \
                                (cond.rhs, cond.lhs)
                idx2state[idx] = cond if idx2state.get(idx, None) is None else \
                                           idx2state[idx] & cond
            if any(
                    len(Intersection(idx2state[idx].as_set(), state_space)) !=
                    1 for idx in idx2state):
                return S.Zero  # a RandomIndexedSymbol cannot go to different states simultaneously
            i, result = -1, 1
            conds = And.fromiter(
                Intersection(idx2state[idx].as_set(),
                             state_space).as_relational(idx)
                for idx in idx2state)
            if not isinstance(conds, And):
                return self.probability(conds, new_gc)
            conds = conds.args
            while i > -len(conds):
                result *= self.probability(conds[i], conds[i - 1] & info)
                i -= 1
            if isinstance(given_condition,
                          (TransitionMatrixOf, StochasticStateSpaceOf)):
                return result * Probability(conds[i])
            if isinstance(given_condition, And):
                idx_sym = conds[i].atoms(RandomIndexedSymbol)
                prob, count = S(0), 0
                for gc in given_condition.args:
                    if gc.atoms(RandomIndexedSymbol) == idx_sym:
                        prob += gc.rhs if isinstance(gc.lhs,
                                                     Probability) else gc.lhs
                        count += 1
                if isinstance(state_space, FiniteSet) and \
                    count == len(state_space) - 1:
                    given_condition = Eq(Probability(conds[i]), S(1) - prob)
            if isinstance(given_condition, Eq):
                if not isinstance(given_condition.lhs, Probability) or \
                    given_condition.lhs.args[0] != conds[i]:
                    raise ValueError("Probability for %s needed", conds[i])
                return result * given_condition.rhs

        if isinstance(condition, Or):
            conds, prob_sum = condition.args, S(0)
            idx2state = dict()
            for cond in conds:
                idx, state = (cond.lhs, cond.rhs) if isinstance(cond.lhs, RandomIndexedSymbol) else \
                                (cond.rhs, cond.lhs)
                idx2state[idx] = cond if idx2state.get(idx, None) is None else \
                                           idx2state[idx] | cond
            conds = Or.fromiter(
                Intersection(idx2state[idx].as_set(),
                             state_space).as_relational(idx)
                for idx in idx2state)
            if not isinstance(conds, Or):
                return self.probability(conds, new_gc)
            return sum([self.probability(cond, new_gc) for cond in conds.args])

        if isinstance(condition, Ne):
            prob = self.probability(Not(condition), new_gc)
            return S(1) - prob

        raise NotImplementedError(
            "Mechanism for handling (%s, %s) queries hasn't been "
            "implemented yet." % (condition, given_condition))
Esempio n. 21
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert isinstance(X.state_space, Range)
    assert X.index_set == S.Naturals0
    assert isinstance(X.transition_probabilities, MatrixSymbol)
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))

    nz = Symbol('n', integer=True)
    TZ = MatrixSymbol('M', nz, nz)
    SZ = Range(nz)
    YZ = DiscreteMarkovChain('Y', SZ, TZ)
    assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]

    raises(ValueError, lambda: sample_stochastic_process(t))
    raises(ValueError, lambda: next(sample_stochastic_process(X)))
    # pass name and state_space
    # any hashable object should be a valid state
    # states should be valid as a tuple/set/list/Tuple/Range
    sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
    state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
                    Tuple(1, exp(sym), Str('World'), sympify=False),
                    Range(-1, 5, 2), [rainy, cloudy, sunny]]
    chains = [
        DiscreteMarkovChain("Y", state_space) for state_space in state_spaces
    ]

    for i, Y in enumerate(chains):
        assert isinstance(Y.transition_probabilities, MatrixSymbol)
        assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(
            *state_spaces[i])
        assert Y.number_of_states == 3

        with ignore_warnings(
                UserWarning):  # TODO: Restore tests once warnings are removed
            assert P(Eq(Y[2], 1), Eq(Y[0], 2),
                     evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
        assert E(Y[0]) == Expectation(Y[0])

        raises(ValueError, lambda: next(sample_stochastic_process(Y)))

    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
    Y = DiscreteMarkovChain("Y", Range(1, t, 2))
    assert Y.number_of_states == ceiling((t - 1) / 2)

    # pass name and transition_probabilities
    chains = [
        DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
        DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
        DiscreteMarkovChain("Y",
                            trans_probs=Matrix([[pi, 1 - pi], [sym, 1 - sym]]))
    ]
    for Z in chains:
        assert Z.number_of_states == Z.transition_probabilities.shape[0]
        assert isinstance(Z.transition_probabilities, ImmutableDenseMatrix)

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
    assert YS._transient2transient() == None
    assert YS._transient2absorbing() == None
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
            (TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] +
             TS[1, 2] * TS[2, 2])).simplify() == 0
    assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
    assert P(Eq(YS[3], 3), Eq(
        YS[1],
        1)) == TS[0, 2] * TS[1, 0] + TS[1, 1] * TS[1, 2] + TS[1, 2] * TS[2, 2]
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert E(Y[3], evaluate=False) == Expectation(Y[3])
        assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)), Rational(1, 4))
        & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1])
        & TransitionMatrixOf(X, TO1)) is S.Zero
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
             Eq(Y[1], 1)) == 0.1 * Probability(Eq(Y[0], 0))

    # testing properties of Markov chain
    TO2 = Matrix([[S.One, 0, 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],
                  [Rational(1, 3),
                   Rational(1, 3),
                   Rational(1, 3)], [0, Rational(1, 4),
                                     Rational(3, 4)]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3._transient2absorbing() == None
    raises(ValueError, lambda: Y3.fundamental_matrix())
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    TO4 = Matrix([[Rational(1, 5),
                   Rational(2, 5),
                   Rational(2, 5)], [Rational(1, 10), S.Half,
                                     Rational(2, 5)],
                  [Rational(3, 5),
                   Rational(3, 10),
                   Rational(1, 10)]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[Rational(11, 39),
                          Rational(16, 39),
                          Rational(4, 13)]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    assert Y5.stationary_distribution(condition_set=True).subs(
        TS1, TO4).contains(w).doit() == S.true
    TO6 = Matrix([[S.One, 0, 0, 0, 0], [S.Half, 0, S.Half, 0, 0],
                  [0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half],
                  [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0],
                                                         [0, S.Half]])
    assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0],
                                                         [S.Half, 0, S.Half],
                                                         [0, S.Half, 0]])
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One],
         [S.Half, S.One, Rational(3, 2)]])
    assert Y6.absorbing_probabilities() == ImmutableMatrix(
        [[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half],
         [Rational(1, 4), Rational(3, 4)]])

    # test for zero-sized matrix functionality
    X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
    assert X.number_of_states == 0
    assert X.stationary_distribution() == Matrix([[]])
    # test communication_class
    # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
    # tutorial 2.pdf
    TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0],
                  [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]]) / 10
    Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
    tuples = Y7.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1, 3], [0, 2], [4])
    assert recurrence == (True, False, False)
    assert periods == (2, 1, 1)

    TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6],
                  [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]
                  ]) / 10
    Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
    tuples = Y8.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3], [1, 2, 5, 4])
    assert recurrence == (True, False)
    assert periods == (2, 2)

    TO9 = Matrix(
        [[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
         [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
         [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
         [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]]) / 10
    Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
    tuples = Y9.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
    assert recurrence == (True, True, False, True, False)
    assert periods == (1, 1, 1, 1, 1)

    # test custom state space
    Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
    tuples = Y10.communication_classes()
    classes, recurrence, periods = list(zip(*tuples))
    assert classes == ([1], [2, 3])
    assert recurrence == (True, False)
    assert periods == (1, 1)

    # testing miscellaneous queries
    T = Matrix([[S.Half, Rational(1, 4),
                 Rational(1, 4)], [Rational(1, 3), 0,
                                   Rational(2, 3)], [S.Half, S.Half, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
    assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
    raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))

    # testing miscellaneous queries with different state space
    X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)), Rational(1, 4))
        & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
    a = X.state_space.args[0]
    c = X.state_space.args[2]
    assert (E(X[1]**2, Eq(X[0], 1)) -
            (a**2 / 3 + 2 * c**2 / 3)).simplify() == 0
    assert (variance(X[1], Eq(X[0], 1)) -
            (2 * (-a / 3 + c / 3)**2 / 3 +
             (2 * a / 3 - 2 * c / 3)**2 / 3)).simplify() == 0
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
Esempio n. 22
0
def test_ContinuousMarkovChain():
    T1 = Matrix([[S(-2), S(2), S.Zero], [S.Zero, S.NegativeOne, S.One],
                 [Rational(3, 2), Rational(3, 2),
                  S(-3)]])
    C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
    assert C1.limiting_distribution() == ImmutableMatrix(
        [[Rational(3, 19), Rational(12, 19),
          Rational(4, 19)]])

    T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero],
                 [S.Zero, S.One, -S.One]])
    C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
    A, t = C2.generator_matrix, symbols('t', positive=True)
    assert C2.transition_probabilities(A)(t) == Matrix(
        [[S.Half + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2, 0],
         [S.Half - exp(-2 * t) / 2, S.Half + exp(-2 * t) / 2, 0],
         [
             S.Half - exp(-t) + exp(-2 * t) / 2, S.Half - exp(-2 * t) / 2,
             exp(-t)
         ]])
    with ignore_warnings(
            UserWarning):  ### TODO: Restore tests once warnings are removed
        assert P(Eq(C2(1), 1), Eq(C2(0), 1),
                 evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
    assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2) / 2 + S.Half
    assert P(
        Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
        Eq(P(Eq(C2(1), 0)),
           S.Half)) == (Rational(1, 4) - exp(-2) / 4) * (exp(-2) / 2 + S.Half)
    assert P(
        Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
        (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
        Eq(P(Eq(C2(1), 0)), Rational(1, 4))
        & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
    assert E(C2(Rational(3, 2)),
             Eq(C2(0), 2)) == -exp(-3) / 2 + 2 * exp(Rational(-3, 2)) + S.Half
    assert variance(C2(Rational(3, 2)), Eq(
        C2(0),
        1)) == ((S.Half - exp(-3) / 2)**2 * (exp(-3) / 2 + S.Half) +
                (Rational(-1, 2) - exp(-3) / 2)**2 * (S.Half - exp(-3) / 2))
    raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
    assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)),
                              S.Half)) == Probability(Eq(C2(1), 0))
    TS1 = MatrixSymbol('G', 3, 3)
    CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
    A = CS1.generator_matrix
    assert CS1.transition_probabilities(A)(t) == exp(t * A)

    C3 = ContinuousMarkovChain(
        'C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
    assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2) / 2 + S.Half
    assert P(Eq(C3(1), Symbol('1')), Eq(C3(0),
                                        Symbol('1'))) == exp(-2) / 2 + S.Half

    #test probability queries
    G = Matrix([[-S(1), Rational(1, 10),
                 Rational(9, 10)], [Rational(2, 5), -S(1),
                                    Rational(3, 5)],
                [Rational(1, 2), Rational(1, 2), -S(1)]])
    C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G)
    assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862),
                                       0)).round(5) == Float(0.35469, 5)
    assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314),
                                          2)).round(5) == Float(0.32452, 5)
    assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6)
    assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)),
                 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14)
    assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)),
                 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14)
    assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)),
                 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14)
    assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174),
                                         1)) == P(Eq(C(10.912), C(5.243)),
                                                  Eq(C(2.174), 1))
    assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102),
                                      1)) == P(Lt(C(9.9), C(2.344)),
                                               Eq(C(1.102), 1))
    assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153),
                                       1)) == P(Le(C(1.008), C(7.87)),
                                                Eq(C(0.153), 1))

    #test symbolic queries
    a, b, c, d = symbols('a b c d')
    query = P(Eq(C(a), b), Eq(C(c), d))
    assert query.subs({
        a: 3.65,
        b: 2,
        c: 1.78,
        d: 1
    }).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10)
    query_gt = P(Gt(C(a), b), Eq(C(c), d))
    query_le = P(Le(C(a), b), Eq(C(c), d))
    assert query_gt.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() + query_le.subs({
        a: 13.2,
        b: 0,
        c: 3.29,
        d: 2
    }).evalf() == 1
    query_ge = P(Ge(C(a), b), Eq(C(c), d))
    query_lt = P(Lt(C(a), b), Eq(C(c), d))
    assert query_ge.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() + query_lt.subs({
        a: 7.43,
        b: 1,
        c: 1.45,
        d: 0
    }).evalf() == 1

    #test issue 20078
    assert (2 * C(1) + 3 * C(1)).simplify() == 5 * C(1)
    assert (2 * C(1) - 3 * C(1)).simplify() == -C(1)
    assert (2 * (0.25 * C(1))).simplify() == 0.5 * C(1)
    assert (2 * C(1) * 0.25 * C(1)).simplify() == 0.5 * C(1)**2
    assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1) * C(1)**2
Esempio n. 23
0
def test_DiscreteMarkovChain():

    # pass only the name
    X = DiscreteMarkovChain("X")
    assert X.state_space == S.Reals
    assert X.index_set == S.Naturals0
    assert X.transition_probabilities == None
    t = symbols('t', positive=True, integer=True)
    assert isinstance(X[t], RandomIndexedSymbol)
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain(1))
    raises(NotImplementedError, lambda: X(t))

    # pass name and state_space
    Y = DiscreteMarkovChain("Y", [1, 2, 3])
    assert Y.transition_probabilities == None
    assert Y.state_space == FiniteSet(1, 2, 3)
    assert P(Eq(Y[2], 1), Eq(Y[0], 2)) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
    assert E(X[0]) == Expectation(X[0])
    raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))

    # pass name, state_space and transition_probabilities
    T = Matrix([[0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]])
    TS = MatrixSymbol('T', 3, 3)
    Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
    YS = DiscreteMarkovChain("Y", [0, 1, 2], TS)
    assert YS._transient2transient() == None
    assert YS._transient2absorbing() == None
    assert Y.joint_distribution(1, Y[2],
                                3) == JointDistribution(Y[1], Y[2], Y[3])
    raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
    assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
    assert str(P(Eq(YS[3], 2), Eq(YS[1], 1))) == \
        "T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2]"
    TO = Matrix([[0.25, 0.75, 0], [0, 0.25, 0.75], [0.75, 0, 0.25]])
    assert P(Eq(Y[3], 2),
             Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(
                 0.375, 3)
    assert E(Y[3], evaluate=False) == Expectation(Y[3])
    assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
    TSO = MatrixSymbol('T', 4, 4)
    raises(
        ValueError,
        lambda: str(P(Eq(YS[3], 2),
                      Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
    raises(TypeError,
           lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
    raises(
        ValueError,
        lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
    raises(IndexError, lambda: str(P(Eq(YS[3], 3), Eq(YS[1], 1))))
    raises(ValueError, lambda: str(P(Eq(YS[1], 1), Eq(YS[2], 2))))
    raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
    raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))

    # extended tests for probability queries
    TO1 = Matrix([[S(1) / 4, S(3) / 4, 0], [S(1) / 3,
                                            S(1) / 3,
                                            S(1) / 3], [0,
                                                        S(1) / 4,
                                                        S(3) / 4]])
    assert P(
        And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
        Eq(Probability(Eq(Y[0], 0)),
           S(1) / 4) & TransitionMatrixOf(Y, TO1)) == S(1) / 16
    assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
            Probability(Eq(Y[0], 0))/4
    assert P(
        Lt(X[1], 2) & Gt(X[1], 0),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == S(1) / 4
    assert P(
        Ne(X[1], 2) & Ne(X[1], 1),
        Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2])
        & TransitionMatrixOf(X, TO1)) == S(0)
    raises(
        ValueError, lambda: str(
            P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1))))

    # testing properties of Markov chain
    TO2 = Matrix([[S(1), 0, 0], [S(1) / 3, S(1) / 3,
                                 S(1) / 3], [0, S(1) / 4,
                                             S(3) / 4]])
    TO3 = Matrix([[S(1) / 4, S(3) / 4, 0], [S(1) / 3,
                                            S(1) / 3,
                                            S(1) / 3], [0,
                                                        S(1) / 4,
                                                        S(3) / 4]])
    Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
    Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
    assert Y3._transient2absorbing() == None
    raises(ValueError, lambda: Y3.fundamental_matrix())
    assert Y2.is_absorbing_chain() == True
    assert Y3.is_absorbing_chain() == False
    TO4 = Matrix([[S(1) / 5, S(2) / 5, S(2) / 5],
                  [S(1) / 10, S(1) / 2, S(2) / 5],
                  [S(3) / 5, S(3) / 10, S(1) / 10]])
    Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
    w = ImmutableMatrix([[S(11) / 39, S(16) / 39, S(4) / 13]])
    assert Y4.limiting_distribution == w
    assert Y4.is_regular() == True
    TS1 = MatrixSymbol('T', 3, 3)
    Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
    assert Y5.limiting_distribution(w, TO4).doit() == True
    TO6 = Matrix([[S(1), 0, 0, 0, 0], [S(1) / 2, 0,
                                       S(1) / 2, 0, 0],
                  [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0,
                                                  S(1) / 2, 0,
                                                  S(1) / 2], [0, 0, 0, 0, 1]])
    Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
    assert Y6._transient2absorbing() == ImmutableMatrix([[S(1) / 2, 0], [0, 0],
                                                         [0, S(1) / 2]])
    assert Y6._transient2transient() == ImmutableMatrix(
        [[0, S(1) / 2, 0], [S(1) / 2, 0, S(1) / 2], [0, S(1) / 2, 0]])
    assert Y6.fundamental_matrix() == ImmutableMatrix(
        [[S(3) / 2, S(1), S(1) / 2], [S(1), S(2), S(1)],
         [S(1) / 2, S(1), S(3) / 2]])
    assert Y6.absorbing_probabilites() == ImmutableMatrix(
        [[S(3) / 4, S(1) / 4], [S(1) / 2, S(1) / 2], [S(1) / 4,
                                                      S(3) / 4]])

    # testing miscellaneous queries
    T = Matrix([[S(1) / 2, S(1) / 4, S(1) / 4], [S(1) / 3, 0,
                                                 S(2) / 3],
                [S(1) / 2, S(1) / 2, 0]])
    X = DiscreteMarkovChain('X', [0, 1, 2], T)
    assert P(
        Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
        Eq(P(Eq(X[1], 0)),
           S(1) / 4) & Eq(P(Eq(X[1], 1)),
                          S(1) / 4)) == S(1) / 12
    assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == S(2) / 3
    assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) == S(0)
    assert P(Ne(X[2], 2), Eq(X[1], 1)) == S(1) / 3
    assert E(X[1]**2, Eq(X[0], 1)) == S(8) / 3
    assert variance(X[1], Eq(X[0], 1)) == S(8) / 9
    raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
Esempio n. 24
0
def test_PoissonProcess():
    X = PoissonProcess("X", 3)
    assert X.state_space == S.Naturals0
    assert X.index_set == Interval(0, oo)
    assert X.lamda == 3

    t, d, x, y = symbols('t d x y', positive=True)
    assert isinstance(X(t), RandomIndexedSymbol)
    assert X.distribution(t) == PoissonDistribution(3 * t)
    raises(ValueError, lambda: PoissonProcess("X", -1))
    raises(NotImplementedError, lambda: X[t])
    raises(IndexError, lambda: X(-5))

    assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
        Lambda((X(2), X(3)), 6**X(2) * 9**X(3) * exp(-15) /
               (factorial(X(2)) * factorial(X(3)))))

    assert X.joint_distribution(4, 6) == JointDistributionHandmade(
        Lambda((X(4), X(6)), 12**X(4) * 18**X(6) * exp(-30) /
               (factorial(X(4)) * factorial(X(6)))))

    assert P(X(t) < 1) == exp(-3 * t)
    assert P(Eq(X(t), 0),
             Contains(t, Interval.Lopen(3, 5))) == exp(-6)  # exp(-2*lamda)
    res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
    assert res == 3 * exp(-3)

    # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
    assert P(
        Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1),
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
        & Contains(y, Interval.Lopen(3, 4))) == res**4

    # Return Probability because of overlapping intervals
    assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
    & Contains(d, Interval.Ropen(2, 4))) == \
                Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
                & Contains(d, Interval.Ropen(2, 4)))

    raises(ValueError, lambda: P(
        Eq(X(t), 2) & Eq(X(d), 3),
        Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))
           )  # no bound on d
    assert P(Eq(X(3), 2)) == 81 * exp(-9) / 2
    assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0,
                                                     5))) == 225 * exp(-15) / 2

    # Check that probability works correctly by adding it to 1
    res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
    res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
    assert res1 == 691 * exp(-15)
    assert (res1 + res2).simplify() == 1

    # Check Not and  Or
    assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
            Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
    assert P(Eq(X(t), 2) | Ne(X(t), 4),
             Contains(t, Interval.Ropen(2, 4))) == 1 - 36 * exp(-6)
    raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
    assert E(
        X(t)) == 3 * t  # property of the distribution at a given timestamp
    assert E(
        X(t)**2 + X(d) * 2 + X(y)**3,
        Contains(t, Interval.Lopen(0, 1))
        & Contains(d, Interval.Lopen(1, 2))
        & Contains(y, Interval.Ropen(3, 4))) == 75
    assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
    assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
    & Contains(d, Interval.Ropen(1, 2))) == \
            Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
            & Contains(d, Interval.Ropen(1, 2)))

    # Value Error because of infinite time bound
    raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))

    # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
    assert E((X(t) + X(d)) * (X(t) - X(d)),
             Contains(t, Interval.Lopen(0, 1))
             & Contains(d, Interval.Lopen(1, 2))) == 0
    assert E(X(2) + x * E(X(5))) == 15 * x + 6
    assert E(x * X(1) + y) == 3 * x + y
    assert P(Eq(X(1), 2) & Eq(X(t), 3),
             Contains(t, Interval.Lopen(1, 2))) == 81 * exp(-6) / 4
    Y = PoissonProcess("Y", 6)
    Z = X + Y
    assert Z.lamda == X.lamda + Y.lamda == 9
    raises(ValueError,
           lambda: X + 5)  # should be added be only PoissonProcess instance
    N, M = Z.split(4, 5)
    assert N.lamda == 4
    assert M.lamda == 5
    raises(ValueError, lambda: Z.split(3, 2))  # 2+3 != 9

    raises(
        ValueError, lambda: P(Eq(X(t), 0),
                              Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
    # check if it handles queries with two random variables in one args
    res1 = P(Eq(N(3), N(5)))
    assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
    res2 = P(N(3) > N(1))
    assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
    assert P(N(3) < N(1)) == 0  # condition is not possible
    res3 = P(N(3) <= N(1))  # holds only for Eq(N(3), N(1))
    assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))

    # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
    X = PoissonProcess('X', 10)  # 11.1
    assert P(Eq(X(S(1) / 3), 3)
             & Eq(X(1), 10)) == exp(-10) * Rational(8000000000, 11160261)
    assert P(Eq(X(1), 1), Eq(X(S(1) / 3), 3)) == 0
    assert P(Eq(X(1), 10), Eq(X(S(1) / 3), 3)) == P(Eq(X(S(2) / 3), 7))

    X = PoissonProcess('X', 2)  # 11.2
    assert P(X(S(1) / 2) < 1) == exp(-1)
    assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
    assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)

    X = PoissonProcess('X', 3)
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4) * exp(-6)

    # check few properties
    assert P(
        X(2) <= 3,
        X(1) >= 1) == 3 * P(Eq(X(1), 0)) + 2 * P(Eq(X(1), 1)) + P(Eq(X(1), 2))
    assert P(X(2) <= 3, X(1) > 1) == 2 * P(Eq(X(1), 0)) + 1 * P(Eq(X(1), 1))
    assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3)) * P(Eq(X(1), 2))
    assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))

    #test issue 20078
    assert (2 * X(t) + 3 * X(t)).simplify() == 5 * X(t)
    assert (2 * X(t) - 3 * X(t)).simplify() == -X(t)
    assert (2 * (0.25 * X(t))).simplify() == 0.5 * X(t)
    assert (2 * X(t) * 0.25 * X(t)).simplify() == 0.5 * X(t)**2
    assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1) * X(t)**2
Esempio n. 25
0
    def probability(self,
                    condition,
                    given_condition=None,
                    evaluate=True,
                    **kwargs):
        """
        Handles probability queries for discrete Markov chains.

        Parameters
        ==========

        condition: Relational
        given_condition: Relational/And

        Returns
        =======

        Probability
            If the transition probabilities are not available
        Expr
            If the transition probabilities is MatrixSymbol or Matrix

        Note
        ====

        Any information passed at the time of query overrides
        any information passed at the time of object creation like
        transition probabilities, state space.

        Pass the transition matrix using TransitionMatrixOf and state space
        using StochasticStateSpaceOf in given_condition using & or And.
        """

        check, trans_probs, state_space, given_condition = \
            self._preprocess(given_condition, evaluate)

        if check:
            return Probability(condition, given_condition)

        if isinstance(condition, Eq) and \
            isinstance(given_condition, Eq) and \
            len(given_condition.atoms(RandomSymbol)) == 1:
            # handles simple queries like P(Eq(X[i], dest_state), Eq(X[i], init_state))
            lhsc, rhsc = condition.lhs, condition.rhs
            lhsg, rhsg = given_condition.lhs, given_condition.rhs
            if not isinstance(lhsc, RandomIndexedSymbol):
                lhsc, rhsc = (rhsc, lhsc)
            if not isinstance(lhsg, RandomIndexedSymbol):
                lhsg, rhsg = (rhsg, lhsg)
            keyc, statec, keyg, stateg = (lhsc.key, rhsc, lhsg.key, rhsg)
            if Lt(stateg, trans_probs.shape[0]) == False or Lt(
                    statec, trans_probs.shape[1]) == False:
                raise IndexError(
                    "No information is avaliable for (%s, %s) in "
                    "transition probabilities of shape, (%s, %s). "
                    "State space is zero indexed." %
                    (stateg, statec, trans_probs.shape[0],
                     trans_probs.shape[1]))
            if keyc < keyg:
                raise ValueError(
                    "Incorrect given condition is given, probability "
                    "of past state cannot be computed from future state.")
            nsteptp = trans_probs**(keyc - keyg)
            if hasattr(nsteptp, "__getitem__"):
                return nsteptp.__getitem__((stateg, statec))
            return Indexed(nsteptp, stateg, statec)

        if isinstance(condition, And):
            # handle queries like,
            # P(Eq(X[i+k], s1) & Eq(X[i+m], s2) . . . & Eq(X[i], sn), Eq(P(X[i]), prob))
            conds = condition.args
            i, result = -1, 1
            while i > -len(conds):
                result *= self.probability(conds[i], conds[i-1] & \
                            TransitionMatrixOf(self, trans_probs) & \
                            StochasticStateSpaceOf(self, state_space))
                i -= 1
            if isinstance(given_condition,
                          (TransitionMatrixOf, StochasticStateSpaceOf)):
                return result * Probability(conds[i])
            if isinstance(given_condition, Eq):
                if not isinstance(given_condition.lhs, Probability) or \
                    given_condition.lhs.args[0] != conds[i]:
                    raise ValueError("Probability for %s needed", conds[i])
                return result * given_condition.rhs

        raise NotImplementedError(
            "Mechanism for handling (%s, %s) queries hasn't been "
            "implemented yet." % (condition, given_condition))