Esempio n. 1
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == \
        [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
    assert list(cartes()) == [()]
    assert list(cartes('a')) == [('a',)]
    assert list(cartes('a', repeat=2)) == [('a', 'a')]
    assert list(cartes(range(2))) == [(0,), (1,)]
Esempio n. 2
0
def test_roots_quadratic():
    assert roots_quadratic(Poly(2*x**2, x)) == [0, 0]
    assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [-Rational(3, 2), 0]
    assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2]
    assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2]

    f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c)

    assert roots_quadratic(Poly(f, x)) == \
        [-e*(a + c)/(a - c) - sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)**2),
         -e*(a + c)/(a - c) + sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)**2)]

    # check for simplification
    f = Poly(y*x**2 - 2*x - 2*y, x)
    assert roots_quadratic(f) == \
        [-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y]
    f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x)
    assert roots_quadratic(f) == \
        [y**2/2 - sqrt(y**4)/2 + 1, y**2/2 + sqrt(y**4)/2 + 1]

    f = Poly(sqrt(2)*x**2 - 1, x)
    r = roots_quadratic(f)
    assert r == _nsort(r)

    # issue 8255
    f = Poly(-24*x**2 - 180*x + 264)
    assert [w.n(2) for w in f.all_roots(radicals=True)] == \
           [w.n(2) for w in f.all_roots(radicals=False)]
    for _a, _b, _c in cartes((-2, 2), (-2, 2), (0, -1)):
        f = Poly(_a*x**2 + _b*x + _c)
        roots = roots_quadratic(f)
        assert roots == _nsort(roots)
Esempio n. 3
0
def test_roots_binomial():
    assert roots_binomial(Poly(5*x, x)) == [0]
    assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0]
    assert roots_binomial(Poly(5*x + 2, x)) == [-Rational(2, 5)]

    A = 10**Rational(3, 4)/10

    assert roots_binomial(Poly(5*x**4 + 2, x)) == \
        [-A - A*I, -A + A*I, A - A*I, A + A*I]

    a1 = Symbol('a1', nonnegative=True)
    b1 = Symbol('b1', nonnegative=True)

    r0 = roots_quadratic(Poly(a1*x**2 + b1, x))
    r1 = roots_binomial(Poly(a1*x**2 + b1, x))

    assert powsimp(r0[0]) == powsimp(r1[0])
    assert powsimp(r0[1]) == powsimp(r1[1])
    for a, b, s, n in cartes((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
        if a == b and a != 1:  # a == b == 1 is sufficient
            continue
        p = Poly(a*x**n + s*b)
        ans = roots_binomial(p)
        assert ans == _nsort(ans)

    # issue 8813
    assert roots(Poly(2*x**3 - 16*y**3, x)) == {
        2*y*(-S(1)/2 - sqrt(3)*I/2): 1,
        2*y: 1,
        2*y*(-S(1)/2 + sqrt(3)*I/2): 1}
Esempio n. 4
0
def test_fuzzy_group():
    from sympy.utilities.iterables import cartes
    v = [T, F, U]
    for i in cartes(*[v]*3):
        assert _fuzzy_group(i) is (
            None if None in i else (True if all(j for j in i) else False))
        assert _fuzzy_group(i, quick_exit=True) is (
            None if (i.count(False) > 1) else (None if None in i else (
            True if all(j for j in i) else False)))
Esempio n. 5
0
 def _contains(self, other):
     from sympy.matrices import Matrix
     from sympy.solvers.solveset import solveset, linsolve
     from sympy.utilities.iterables import iterable, cartes
     L = self.lamda
     if self._is_multivariate():
         if not iterable(L.expr):
             if iterable(other):
                 return S.false
             return other.as_numer_denom() in self.func(
                 Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
         if len(L.expr) != len(self.lamda.variables):
             raise NotImplementedError(filldedent('''
 Dimensions of input and output of Lambda are different.'''))
         eqs = [expr - val for val, expr in zip(other, L.expr)]
         variables = L.variables
         free = set(variables)
         if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
             solns = list(linsolve([e - val for e, val in
             zip(L.expr, other)], variables))
         else:
             syms = [e.free_symbols & free for e in eqs]
             solns = {}
             for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                 if not s:
                     if e != v:
                         return S.false
                     solns[vars[i]] = [v]
                     continue
                 elif len(s) == 1:
                     sy = s.pop()
                     sol = solveset(e, sy)
                     if sol is S.EmptySet:
                         return S.false
                     elif isinstance(sol, FiniteSet):
                         solns[sy] = list(sol)
                     else:
                         raise NotImplementedError
                 else:
                     raise NotImplementedError
             solns = cartes(*[solns[s] for s in variables])
     else:
         # assume scalar -> scalar mapping
         solnsSet = solveset(L.expr - other, L.variables[0])
         if solnsSet.is_FiniteSet:
             solns = list(solnsSet)
         else:
             raise NotImplementedError(filldedent('''
             Determining whether an ImageSet contains %s has not
             been implemented.''' % func_name(other)))
     for soln in solns:
         try:
             if soln in self.base_set:
                 return S.true
         except TypeError:
             return self.base_set.contains(soln.evalf())
     return S.false
Esempio n. 6
0
def test_piecewise_integrate3_inequality_conditions():
    from sympy.utilities.iterables import cartes
    lim = (x, 0, 5)
    # set below includes two pts below range, 2 pts in range,
    # 2 pts above range, and the boundaries
    N = (-2, -1, 0, 1, 2, 5, 6, 7)

    p = Piecewise((1, x > a), (2, x > b), (0, True))
    ans = p.integrate(lim)
    for i, j in cartes(N, repeat=2):
        reps = dict(zip((a, b), (i, j)))
        assert ans.subs(reps) == p.subs(reps).integrate(lim)
    assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1

    p = Piecewise((1, x > a), (2, x < b), (0, True))
    ans = p.integrate(lim)
    for i, j in cartes(N, repeat=2):
        reps = dict(zip((a, b), (i, j)))
        assert ans.subs(reps) == p.subs(reps).integrate(lim)
Esempio n. 7
0
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, 1 <= x))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes
        folded = list(map(piecewise_fold, expr.args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
Esempio n. 8
0
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, 1 <= x))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes
        folded = list(map(piecewise_fold, expr.args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, S.true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
Esempio n. 9
0
def test_issue1447():
    # using list(...) so py.test can recalculate values
    from sympy import sign
    tests = list(cartes([cot, tan],
                        [-pi/2, 0, pi/2, pi, 3*pi/2],
                        ['-', '+']))
    results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
               oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
    assert len(tests) == len(results)
    for i, (args, res) in enumerate(zip(tests, results)):
        f, l, d= args
        eq=f(x)
        try:
            assert limit(eq, x, l, dir=d) == res
        except AssertionError:
            if 0: # change to 1 if you want to see the failing tests
                print
                print i, res, eq, l, d, limit(eq, x, l, dir=d)
            else:
                assert None
Esempio n. 10
0
def test_issue2084():
    # using list(...) so py.test can recalculate values
    tests = list(cartes([x, -x],
                        [-1, 1],
                        [2, 3, Rational(1, 2), Rational(2, 3)],
                        ['-', '+']))
    results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
               0, 0, 0, 0, 0, 0, 0, 0,
               oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
               0, 0, 0, 0, 0, 0, 0, 0)
    assert len(tests) == len(results)
    for i, (args, res) in enumerate(zip(tests, results)):
        y, s, e, d = args
        eq=y**(s*e)
        try:
            assert limit(eq, x, 0, dir=d) == res
        except AssertionError:
            if 0: # change to 1 if you want to see the failing tests
                print
                print i, res, eq, d, limit(eq, x, 0, dir=d)
            else:
                assert None
Esempio n. 11
0
def test_roots_binomial():
    assert roots_binomial(Poly(5 * x, x)) == [0]
    assert roots_binomial(Poly(5 * x ** 4, x)) == [0, 0, 0, 0]
    assert roots_binomial(Poly(5 * x + 2, x)) == [-Rational(2, 5)]

    A = 10 ** Rational(3, 4) / 10

    assert roots_binomial(Poly(5 * x ** 4 + 2, x)) == [-A - A * I, -A + A * I, A - A * I, A + A * I]

    a1 = Symbol("a1", nonnegative=True)
    b1 = Symbol("b1", nonnegative=True)

    r0 = roots_quadratic(Poly(a1 * x ** 2 + b1, x))
    r1 = roots_binomial(Poly(a1 * x ** 2 + b1, x))

    assert powsimp(r0[0]) == powsimp(r1[0])
    assert powsimp(r0[1]) == powsimp(r1[1])
    for a, b, s, n in cartes((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
        if a == b and a != 1:  # a == b == 1 is sufficient
            continue
        p = Poly(a * x ** n + s * b)
        roots = roots_binomial(p)
        assert roots == _nsort(roots)
Esempio n. 12
0
 def _check():
     for f, g in cartes(*[(Line, Ray, Segment)] * 2):
         l1 = f(a, b)
         l2 = g(c, d)
         assert l1.intersection(l2) == l2.intersection(l1)
Esempio n. 13
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == \
           [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
    assert list(cartes()) == [()]
Esempio n. 14
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == \
           [[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]]
    assert list(cartes()) == [[]]
Esempio n. 15
0
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, True))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes, sift, common_prefix
        # Given
        #     P1 = Piecewise((e11, c1), (e12, c2), A)
        #     P2 = Piecewise((e21, c1), (e22, c2), B)
        #     ...
        # the folding of f(P1, P2) is trivially
        # Piecewise(
        #   (f(e11, e21), c1),
        #   (f(e12, e22), c2),
        #   (f(Piecewise(A), Piecewise(B)), True))
        # Certain objects end up rewriting themselves as thus, so
        # we do that grouping before the more generic folding.
        # The following applies this idea when f = Add or f = Mul
        # (and the expression is commutative).
        if expr.is_Add or expr.is_Mul and expr.is_commutative:
            p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
            pc = sift(p, lambda x: x.args[0].cond)
            for c in pc:
                if len(pc[c]) > 1:
                    pargs = [list(i.args) for i in pc[c]]
                    # the first one is the same; there may be more
                    com = common_prefix(*[
                        [i.cond for i in j] for j in pargs])
                    n = len(com)
                    collected = []
                    for i in range(n):
                        collected.append((
                            expr.func(*[ai[i].expr for ai in pargs]),
                            com[i]))
                    remains = []
                    for a in pargs:
                        if n == len(a):  # no more args
                            continue
                        if a[n].cond == True:  # no longer Piecewise
                            remains.append(a[n].expr)
                        else:  # restore the remaining Piecewise
                            remains.append(
                                Piecewise(*a[n:], evaluate=False))
                    if remains:
                        collected.append((expr.func(*remains), True))
                    args.append(Piecewise(*collected, evaluate=False))
                    continue
                args.extend(pc[c])
        else:
            args = expr.args
        # fold
        folded = list(map(piecewise_fold, args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
Esempio n. 16
0
def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1, 2), [1, 2], Point(1, 2))
    singles2d2 = ((1, 3), [1, 3], Point(1, 3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1, 2)
    singles3d = ((1, 2, 3), [1, 2, 3], Point(1, 2, 3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1, 2, 3)
    singles4d = ((1, 2, 3, 4), [1, 2, 3, 4], Point(1, 2, 3, 4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1, 2, 3, 4)

    # test 2D
    test_single = [
        "distance",
        "is_scalar_multiple",
        "taxicab_distance",
        "midpoint",
        "intersection",
        "dot",
        "equals",
        "__add__",
        "__sub__",
    ]
    test_double = ["is_concyclic", "is_collinear"]
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ["is_collinear"]
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles3d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ["is_collinear"]
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol("x")
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
    a = Point(0, 1)
    assert a / 10.0 == Point(0, 0.1, evaluate=False)
    a = Point(0, 1)
    assert a * 10.0 == Point(0.0, 10.0, evaluate=False)

    # test evaluate=False when changing dimensions
    u = Point(0.1, 0.2, evaluate=False)
    u4 = Point(u, dim=4, on_morph="ignore")
    assert u4.args == (0.1, 0.2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph="error")
Esempio n. 17
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == \
           [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
    assert list(cartes()) == [()]
Esempio n. 18
0
    def _contains(self, other):
        from sympy.matrices import Matrix
        from sympy.solvers.solveset import solveset, linsolve
        from sympy.utilities.iterables import is_sequence, iterable, cartes
        L = self.lamda
        if is_sequence(other):
            if not is_sequence(L.expr):
                return S.false
            if len(L.expr) != len(other):
                raise ValueError(filldedent('''
    Dimensions of other and output of Lambda are different.'''))
        elif iterable(other):
                raise ValueError(filldedent('''
    `other` should be an ordered object like a Tuple.'''))

        solns = None
        if self._is_multivariate():
            if not is_sequence(L.expr):
                # exprs -> (numer, denom) and check again
                # XXX this is a bad idea -- make the user
                # remap self to desired form
                return other.as_numer_denom() in self.func(
                    Lambda(L.variables, L.expr.as_numer_denom()), self.base_set)
            eqs = [expr - val for val, expr in zip(other, L.expr)]
            variables = L.variables
            free = set(variables)
            if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
                solns = list(linsolve([e - val for e, val in
                zip(L.expr, other)], variables))
            else:
                syms = [e.free_symbols & free for e in eqs]
                solns = {}
                for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                    if not s:
                        if e != v:
                            return S.false
                        solns[vars[i]] = [v]
                        continue
                    elif len(s) == 1:
                        sy = s.pop()
                        sol = solveset(e, sy)
                        if sol is S.EmptySet:
                            return S.false
                        elif isinstance(sol, FiniteSet):
                            solns[sy] = list(sol)
                        else:
                            raise NotImplementedError
                    else:
                        raise NotImplementedError
                solns = cartes(*[solns[s] for s in variables])
        else:
            x = L.variables[0]
            if isinstance(L.expr, Expr):
                # scalar -> scalar mapping
                solnsSet = solveset(L.expr - other, x)
                if solnsSet.is_FiniteSet:
                    solns = list(solnsSet)
                else:
                    msgset = solnsSet
            else:
                # scalar -> vector
                for e, o in zip(L.expr, other):
                    solns = solveset(e - o, x)
                    if solns is S.EmptySet:
                        return S.false
                    for soln in solns:
                        try:
                            if soln in self.base_set:
                                break  # check next pair
                        except TypeError:
                            if self.base_set.contains(soln.evalf()):
                                break
                    else:
                        return S.false  # never broke so there was no True
                return S.true

        if solns is None:
            raise NotImplementedError(filldedent('''
            Determining whether %s contains %s has not
            been implemented.''' % (msgset, other)))
        for soln in solns:
            try:
                if soln in self.base_set:
                    return S.true
            except TypeError:
                return self.base_set.contains(soln.evalf())
        return S.false
Esempio n. 19
0
    def _contains(self, other):
        from sympy.matrices import Matrix
        from sympy.solvers.solveset import solveset, linsolve
        from sympy.solvers.solvers import solve
        from sympy.utilities.iterables import is_sequence, iterable, cartes
        L = self.lamda
        if is_sequence(other) != is_sequence(L.expr):
            return False
        elif is_sequence(other) and len(L.expr) != len(other):
            return False

        if self._is_multivariate():
            if not is_sequence(L.expr):
                # exprs -> (numer, denom) and check again
                # XXX this is a bad idea -- make the user
                # remap self to desired form
                return other.as_numer_denom() in self.func(
                    Lambda(L.signature, L.expr.as_numer_denom()), self.base_set)
            eqs = [expr - val for val, expr in zip(other, L.expr)]
            variables = L.variables
            free = set(variables)
            if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
                solns = list(linsolve([e - val for e, val in
                zip(L.expr, other)], variables))
            else:
                try:
                    syms = [e.free_symbols & free for e in eqs]
                    solns = {}
                    for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                        if not s:
                            if e != v:
                                return S.false
                            solns[vars[i]] = [v]
                            continue
                        elif len(s) == 1:
                            sy = s.pop()
                            sol = solveset(e, sy)
                            if sol is S.EmptySet:
                                return S.false
                            elif isinstance(sol, FiniteSet):
                                solns[sy] = list(sol)
                            else:
                                raise NotImplementedError
                        else:
                            # if there is more than 1 symbol from
                            # variables in expr than this is a
                            # coupled system
                            raise NotImplementedError
                    solns = cartes(*[solns[s] for s in variables])
                except NotImplementedError:
                    solns = solve([e - val for e, val in
                        zip(L.expr, other)], variables, set=True)
                    if solns:
                        _v, solns = solns
                        # watch for infinite solutions like solving
                        # for x, y and getting (x, 0), (0, y), (0, 0)
                        solns = [i for i in solns if not any(
                            s in i for s in variables)]
                        if not solns:
                            return False
                    else:
                        # not sure if [] means no solution or
                        # couldn't find one
                        return
        else:
            x = L.variables[0]
            if isinstance(L.expr, Expr):
                # scalar -> scalar mapping
                solnsSet = solveset(L.expr - other, x)
                if solnsSet.is_FiniteSet:
                    solns = list(solnsSet)
                else:
                    msgset = solnsSet
            else:
                # scalar -> vector
                # note: it is not necessary for components of other
                # to be in the corresponding base set unless the
                # computed component is always in the corresponding
                # domain. e.g. 1/2 is in imageset(x, x/2, Integers)
                # while it cannot be in imageset(x, x + 2, Integers).
                # So when the base set is comprised of integers or reals
                # perhaps a pre-check could be done to see if the computed
                # values are still in the set.
                dom = self.base_set
                for e, o in zip(L.expr, other):
                    dom = dom.intersection(solveset(e - o, x, domain=dom))
                    if dom.is_empty:
                        # there is no solution in common
                        return False
                return fuzzy_not(dom.is_empty)
        for soln in solns:
            try:
                if soln in self.base_set:
                    return True
            except TypeError:
                return
        return S.false
Esempio n. 20
0
def test_Range_set():
    empty = Range(0)

    assert Range(5) == Range(0, 5) == Range(0, 5, 1)

    r = Range(10, 20, 2)
    assert 12 in r
    assert 8 not in r
    assert 11 not in r
    assert 30 not in r

    assert list(Range(0, 5)) == list(range(5))
    assert list(Range(5, 0, -1)) == list(range(5, 0, -1))

    assert Range(5, 15).sup == 14
    assert Range(5, 15).inf == 5
    assert Range(15, 5, -1).sup == 15
    assert Range(15, 5, -1).inf == 6
    assert Range(10, 67, 10).sup == 60
    assert Range(60, 7, -10).inf == 10

    assert len(Range(10, 38, 10)) == 3

    assert Range(0, 0, 5) == empty
    assert Range(oo, oo, 1) == empty
    assert Range(oo, 1, 1) == empty
    assert Range(-oo, 1, -1) == empty
    assert Range(1, oo, -1) == empty
    assert Range(1, -oo, 1) == empty
    assert Range(1, -4, oo) == empty
    assert Range(1, -4, -oo) == Range(1, 2)
    assert Range(1, 4, oo) == Range(1, 2)
    assert Range(-oo, oo).size == oo
    assert Range(oo, -oo, -1).size == oo
    raises(ValueError, lambda: Range(-oo, oo, 2))
    raises(ValueError, lambda: Range(x, pi, y))
    raises(ValueError, lambda: Range(x, y, 0))

    assert 5 in Range(0, oo, 5)
    assert -5 in Range(-oo, 0, 5)
    assert oo not in Range(0, oo)
    ni = symbols('ni', integer=False)
    assert ni not in Range(oo)
    u = symbols('u', integer=None)
    assert Range(oo).contains(u) is not False
    inf = symbols('inf', infinite=True)
    assert inf not in Range(-oo, oo)
    raises(ValueError, lambda: Range(0, oo, 2)[-1])
    raises(ValueError, lambda: Range(0, -oo, -2)[-1])
    assert Range(-oo, 1, 1)[-1] is S.Zero
    assert Range(oo, 1, -1)[-1] == 2
    assert inf not in Range(oo)
    inf = symbols('inf', infinite=True)
    assert inf not in Range(oo)
    assert Range(-oo, 1, 1)[-1] is S.Zero
    assert Range(oo, 1, -1)[-1] == 2
    assert Range(1, 10, 1)[-1] == 9
    assert all(i.is_Integer for i in Range(0, -1, 1))

    it = iter(Range(-oo, 0, 2))
    raises(TypeError, lambda: next(it))

    assert empty.intersect(S.Integers) == empty
    assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
    assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)
    assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1)

    # test slicing
    assert Range(1, 10, 1)[5] == 6
    assert Range(1, 12, 2)[5] == 11
    assert Range(1, 10, 1)[-1] == 9
    assert Range(1, 10, 3)[-1] == 7
    raises(ValueError, lambda: Range(oo, 0, -1)[1:3:0])
    raises(ValueError, lambda: Range(oo, 0, -1)[:1])
    raises(ValueError, lambda: Range(1, oo)[-2])
    raises(ValueError, lambda: Range(-oo, 1)[2])
    raises(IndexError, lambda: Range(10)[-20])
    raises(IndexError, lambda: Range(10)[20])
    raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
    assert Range(2, -oo, -2)[2:2:2] == empty
    assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
    assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
    assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
    assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
    assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
    assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
    assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
    raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
    assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
    raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
    raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
    assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
    assert Range(oo, 0, -2)[-10:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
    raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
    assert Range(oo, 0, -2)[0:-4:-2] == empty
    assert Range(oo, 0, -2)[:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])

    # test empty Range
    assert Range(x, x, y) == empty
    assert empty.reversed == empty
    assert 0 not in empty
    assert list(empty) == []
    assert len(empty) == 0
    assert empty.size is S.Zero
    assert empty.intersect(FiniteSet(0)) is S.EmptySet
    assert bool(empty) is False
    raises(IndexError, lambda: empty[0])
    assert empty[:0] == empty
    raises(NotImplementedError, lambda: empty.inf)
    raises(NotImplementedError, lambda: empty.sup)

    AB = [None] + list(range(12))
    for R in [
            Range(1, 10),
            Range(1, 10, 2),
    ]:
        r = list(R)
        for a, b, c in cartes(AB, AB, [-3, -1, None, 1, 3]):
            for reverse in range(2):
                r = list(reversed(r))
                R = R.reversed
                result = list(R[a:b:c])
                ans = r[a:b:c]
                txt = ('\n%s[%s:%s:%s] = %s -> %s' % (R, a, b, c, result, ans))
                check = ans == result
                assert check, txt

    assert Range(1, 10, 1).boundary == Range(1, 10, 1)

    for r in (Range(1, 10, 2), Range(1, oo, 2)):
        rev = r.reversed
        assert r.inf == rev.inf and r.sup == rev.sup
        assert r.step == -rev.step

    # Make sure to use range in Python 3 and xrange in Python 2 (regardless of
    # compatibility imports above)
    if PY3:
        builtin_range = range
    else:
        builtin_range = xrange

    raises(TypeError, lambda: Range(builtin_range(1)))
    assert S(builtin_range(10)) == Range(10)
    if PY3:
        assert S(builtin_range(1000000000000)) == \
            Range(1000000000000)

    # test Range.as_relational
    assert Range(1,
                 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(x, floor(x))
    assert Range(oo, 1,
                 -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(x, floor(x))

    # symbolic Range
    sr = Range(x, y, t)
    i = Symbol('i', integer=True)
    ip = Symbol('i', integer=True, positive=True)
    ir = Range(i, i + 20, 2)
    # args
    assert sr.args == (x, y, t)
    assert ir.args == (i, i + 20, 2)
    # reversed
    raises(ValueError, lambda: sr.reversed)
    assert ir.reversed == Range(i + 18, i - 2, -2)
    # contains
    assert inf not in sr
    assert inf not in ir
    assert .1 not in sr
    assert .1 not in ir
    assert i + 1 not in ir
    assert i + 2 in ir
    raises(TypeError,
           lambda: 1 in sr)  # XXX is this what contains is supposed to do?
    # iter
    raises(ValueError, lambda: next(iter(sr)))
    assert next(iter(ir)) == i
    assert sr.intersect(S.Integers) == sr
    assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr)
    raises(ValueError, lambda: sr[:2])
    raises(ValueError, lambda: sr[0])
    raises(ValueError, lambda: sr.as_relational(x))
    # len
    assert len(ir) == ir.size == 10
    raises(ValueError, lambda: len(sr))
    raises(ValueError, lambda: sr.size)
    # bool
    assert bool(ir) == bool(sr) == True
    # getitem
    raises(ValueError, lambda: sr[0])
    raises(ValueError, lambda: sr[-1])
    raises(ValueError, lambda: sr[:2])
    assert ir[:2] == Range(i, i + 4, 2)
    assert ir[0] == i
    assert ir[-2] == i + 16
    assert ir[-1] == i + 18
    raises(ValueError, lambda: Range(i)[-1])
    assert Range(ip)[-1] == ip - 1
    assert ir.inf == i
    assert ir.sup == i + 18
    assert Range(ip).inf == 0
    assert Range(ip).sup == ip - 1
    raises(ValueError, lambda: Range(i).inf)
    raises(ValueError, lambda: sr.as_relational(x))
    assert ir.as_relational(x) == (x >= i) & Eq(x, floor(x)) & (x <= i + 18)
Esempio n. 21
0
    def _contains(self, other):
        from sympy.matrices import Matrix
        from sympy.solvers.solveset import solveset, linsolve
        from sympy.utilities.iterables import is_sequence, iterable, cartes
        L = self.lamda
        if is_sequence(other):
            if not is_sequence(L.expr):
                return S.false
            if len(L.expr) != len(other):
                raise ValueError(
                    filldedent('''
    Dimensions of other and output of Lambda are different.'''))
        elif iterable(other):
            raise ValueError(
                filldedent('''
    `other` should be an ordered object like a Tuple.'''))

        solns = None
        if self._is_multivariate():
            if not is_sequence(L.expr):
                # exprs -> (numer, denom) and check again
                # XXX this is a bad idea -- make the user
                # remap self to desired form
                return other.as_numer_denom() in self.func(
                    Lambda(L.variables, L.expr.as_numer_denom()),
                    self.base_set)
            eqs = [expr - val for val, expr in zip(other, L.expr)]
            variables = L.variables
            free = set(variables)
            if all(i.is_number for i in list(Matrix(eqs).jacobian(variables))):
                solns = list(
                    linsolve([e - val for e, val in zip(L.expr, other)],
                             variables))
            else:
                syms = [e.free_symbols & free for e in eqs]
                solns = {}
                for i, (e, s, v) in enumerate(zip(eqs, syms, other)):
                    if not s:
                        if e != v:
                            return S.false
                        solns[vars[i]] = [v]
                        continue
                    elif len(s) == 1:
                        sy = s.pop()
                        sol = solveset(e, sy)
                        if sol is S.EmptySet:
                            return S.false
                        elif isinstance(sol, FiniteSet):
                            solns[sy] = list(sol)
                        else:
                            raise NotImplementedError
                    else:
                        raise NotImplementedError
                solns = cartes(*[solns[s] for s in variables])
        else:
            x = L.variables[0]
            if isinstance(L.expr, Expr):
                # scalar -> scalar mapping
                solnsSet = solveset(L.expr - other, x)
                if solnsSet.is_FiniteSet:
                    solns = list(solnsSet)
                else:
                    msgset = solnsSet
            else:
                # scalar -> vector
                for e, o in zip(L.expr, other):
                    solns = solveset(e - o, x)
                    if solns is S.EmptySet:
                        return S.false
                    for soln in solns:
                        try:
                            if soln in self.base_set:
                                break  # check next pair
                        except TypeError:
                            if self.base_set.contains(soln.evalf()):
                                break
                    else:
                        return S.false  # never broke so there was no True
                return S.true

        if solns is None:
            raise NotImplementedError(
                filldedent('''
            Determining whether %s contains %s has not
            been implemented.''' % (msgset, other)))
        for soln in solns:
            try:
                if soln in self.base_set:
                    return S.true
            except TypeError:
                return self.base_set.contains(soln.evalf())
        return S.false
Esempio n. 22
0
def symbols(names, **args):
    r"""
    Transform strings into instances of :class:`Symbol` class.

    :func:`symbols` function returns a sequence of symbols with names taken
    from ``names`` argument, which can be a comma or whitespace delimited
    string, or a sequence of strings::

        >>> from sympy import symbols, Function

        >>> x, y, z = symbols('x,y,z')
        >>> a, b, c = symbols('a b c')

    The type of output is dependent on the properties of input arguments::

        >>> symbols('x')
        x
        >>> symbols('x,')
        (x,)
        >>> symbols('x,y')
        (x, y)
        >>> symbols(('a', 'b', 'c'))
        (a, b, c)
        >>> symbols(['a', 'b', 'c'])
        [a, b, c]
        >>> symbols({'a', 'b', 'c'})
        {a, b, c}

    If an iterable container is needed for a single symbol, set the ``seq``
    argument to ``True`` or terminate the symbol name with a comma::

        >>> symbols('x', seq=True)
        (x,)

    To reduce typing, range syntax is supported to create indexed symbols.
    Ranges are indicated by a colon and the type of range is determined by
    the character to the right of the colon. If the character is a digit
    then all contiguous digits to the left are taken as the nonnegative
    starting value (or 0 if there is no digit left of the colon) and all
    contiguous digits to the right are taken as 1 greater than the ending
    value::

        >>> symbols('x:10')
        (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

        >>> symbols('x5:10')
        (x5, x6, x7, x8, x9)
        >>> symbols('x5(:2)')
        (x50, x51)

        >>> symbols('x5:10,y:5')
        (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)

        >>> symbols(('x5:10', 'y:5'))
        ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))

    If the character to the right of the colon is a letter, then the single
    letter to the left (or 'a' if there is none) is taken as the start
    and all characters in the lexicographic range *through* the letter to
    the right are used as the range::

        >>> symbols('x:z')
        (x, y, z)
        >>> symbols('x:c')  # null range
        ()
        >>> symbols('x(:c)')
        (xa, xb, xc)

        >>> symbols(':c')
        (a, b, c)

        >>> symbols('a:d, x:z')
        (a, b, c, d, x, y, z)

        >>> symbols(('a:d', 'x:z'))
        ((a, b, c, d), (x, y, z))

    Multiple ranges are supported; contiguous numerical ranges should be
    separated by parentheses to disambiguate the ending number of one
    range from the starting number of the next::

        >>> symbols('x:2(1:3)')
        (x01, x02, x11, x12)
        >>> symbols(':3:2')  # parsing is from left to right
        (00, 01, 10, 11, 20, 21)

    Only one pair of parentheses surrounding ranges are removed, so to
    include parentheses around ranges, double them. And to include spaces,
    commas, or colons, escape them with a backslash::

        >>> symbols('x((a:b))')
        (x(a), x(b))
        >>> symbols(r'x(:1\,:2)')  # or r'x((:1)\,(:2))'
        (x(0,0), x(0,1))

    All newly created symbols have assumptions set according to ``args``::

        >>> a = symbols('a', integer=True)
        >>> a.is_integer
        True

        >>> x, y, z = symbols('x,y,z', real=True)
        >>> x.is_real and y.is_real and z.is_real
        True

    Despite its name, :func:`symbols` can create symbol-like objects like
    instances of Function or Wild classes. To achieve this, set ``cls``
    keyword argument to the desired type::

        >>> symbols('f,g,h', cls=Function)
        (f, g, h)

        >>> type(_[0])
        <class 'sympy.core.function.UndefinedFunction'>

    """
    result = []

    if isinstance(names, str):
        marker = 0
        literals = [r'\,', r'\:', r'\ ']
        for i in range(len(literals)):
            lit = literals.pop(0)
            if lit in names:
                while chr(marker) in names:
                    marker += 1
                lit_char = chr(marker)
                marker += 1
                names = names.replace(lit, lit_char)
                literals.append((lit_char, lit[1:]))

        def literal(s):
            if literals:
                for c, l in literals:
                    s = s.replace(c, l)
            return s

        names = names.strip()
        as_seq = names.endswith(',')
        if as_seq:
            names = names[:-1].rstrip()
        if not names:
            raise ValueError('no symbols given')

        # split on commas
        names = [n.strip() for n in names.split(',')]
        if not all(n for n in names):
            raise ValueError('missing symbol between commas')
        # split on spaces
        for i in range(len(names) - 1, -1, -1):
            names[i:i + 1] = names[i].split()

        cls = args.pop('cls', Symbol)
        seq = args.pop('seq', as_seq)

        for name in names:
            if not name:
                raise ValueError('missing symbol')

            if ':' not in name:
                symbol = cls(literal(name), **args)
                result.append(symbol)
                continue

            split = _range.split(name)
            # remove 1 layer of bounding parentheses around ranges
            for i in range(len(split) - 1):
                if i and ':' in split[i] and split[i] != ':' and \
                        split[i - 1].endswith('(') and \
                        split[i + 1].startswith(')'):
                    split[i - 1] = split[i - 1][:-1]
                    split[i + 1] = split[i + 1][1:]
            for i, s in enumerate(split):
                if ':' in s:
                    if s[-1].endswith(':'):
                        raise ValueError('missing end range')
                    a, b = s.split(':')
                    if b[-1] in string.digits:
                        a = 0 if not a else int(a)
                        b = int(b)
                        split[i] = [str(c) for c in range(a, b)]
                    else:
                        a = a or 'a'
                        split[i] = [
                            string.ascii_letters[c]
                            for c in range(string.ascii_letters.index(a),
                                           string.ascii_letters.index(b) + 1)
                        ]  # inclusive
                    if not split[i]:
                        break
                else:
                    split[i] = [s]
            else:
                seq = True
                if len(split) == 1:
                    names = split[0]
                else:
                    names = [''.join(s) for s in cartes(*split)]
                if literals:
                    result.extend([cls(literal(s), **args) for s in names])
                else:
                    result.extend([cls(s, **args) for s in names])

        if not seq and len(result) <= 1:
            if not result:
                return ()
            return result[0]

        return tuple(result)
    else:
        for name in names:
            result.append(symbols(name, **args))

        return type(names)(result)
Esempio n. 23
0
def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1,2), [1,2], Point(1,2))
    singles2d2 = ((1,3), [1,3], Point(1,3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1,2)
    singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1,2,3)
    singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1,2,3,4)

    # test 2D
    test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
    test_double = ['is_concyclic', 'is_collinear']
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ['is_collinear']
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles3d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ['is_collinear']
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol('x')
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
    a = Point(0, 1)
    assert a/10.0 == Point(0, 0.1, evaluate=False)
    a = Point(0, 1)
    assert a*10.0 == Point(0.0, 10.0, evaluate=False)

    # test evaluate=False when changing dimensions
    u = Point(.1, .2, evaluate=False)
    u4 = Point(u, dim=4, on_morph='ignore')
    assert u4.args == (.1, .2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph='error')

    # raise error with unmatched dimension
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
    # test unknown on_morph
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
    # test invalid expressions
    raises(TypeError, lambda: Point(Basic(), Basic()))
Esempio n. 24
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == \
           [[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]]
    assert list(cartes()) == [[]]
Esempio n. 25
0
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, True))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes, sift, common_prefix
        # Given
        #     P1 = Piecewise((e11, c1), (e12, c2), A)
        #     P2 = Piecewise((e21, c1), (e22, c2), B)
        #     ...
        # the folding of f(P1, P2) is trivially
        # Piecewise(
        #   (f(e11, e21), c1),
        #   (f(e12, e22), c2),
        #   (f(Piecewise(A), Piecewise(B)), True))
        # Certain objects end up rewriting themselves as thus, so
        # we do that grouping before the more generic folding.
        # The following applies this idea when f = Add or f = Mul
        # (and the expression is commutative).
        if expr.is_Add or expr.is_Mul and expr.is_commutative:
            p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
            pc = sift(p, lambda x: x.args[0].cond)
            for c in pc:
                if len(pc[c]) > 1:
                    pargs = [list(i.args) for i in pc[c]]
                    # the first one is the same; there may be more
                    com = common_prefix(*[
                        [i.cond for i in j] for j in pargs])
                    n = len(com)
                    collected = []
                    for i in range(n):
                        collected.append((
                            expr.func(*[ai[i].expr for ai in pargs]),
                            com[i]))
                    remains = []
                    for a in pargs:
                        if n == len(a):  # no more args
                            continue
                        if a[n].cond == True:  # no longer Piecewise
                            remains.append(a[n].expr)
                        else:  # restore the remaining Piecewise
                            remains.append(
                                Piecewise(*a[n:], evaluate=False))
                    if remains:
                        collected.append((expr.func(*remains), True))
                    args.append(Piecewise(*collected, evaluate=False))
                    continue
                args.extend(pc[c])
        else:
            args = expr.args
        # fold
        folded = list(map(piecewise_fold, args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
Esempio n. 26
0
 def _check():
     for f, g in cartes(*[(Line, Ray, Segment)]*2):
       l1 = f(a, b)
       l2 = g(c, d)
       assert l1.intersection(l2) == l2.intersection(l1)
Esempio n. 27
0
def test_Range_set():
    empty = Range(0)

    assert Range(5) == Range(0, 5) == Range(0, 5, 1)

    r = Range(10, 20, 2)
    assert 12 in r
    assert 8 not in r
    assert 11 not in r
    assert 30 not in r

    assert list(Range(0, 5)) == list(range(5))
    assert list(Range(5, 0, -1)) == list(range(5, 0, -1))


    assert Range(5, 15).sup == 14
    assert Range(5, 15).inf == 5
    assert Range(15, 5, -1).sup == 15
    assert Range(15, 5, -1).inf == 6
    assert Range(10, 67, 10).sup == 60
    assert Range(60, 7, -10).inf == 10

    assert len(Range(10, 38, 10)) == 3

    assert Range(0, 0, 5) == empty
    assert Range(oo, oo, 1) == empty
    raises(ValueError, lambda: Range(1, 4, oo))
    raises(ValueError, lambda: Range(-oo, oo))
    raises(ValueError, lambda: Range(oo, -oo, -1))
    raises(ValueError, lambda: Range(-oo, oo, 2))
    raises(ValueError, lambda: Range(0, pi, 1))
    raises(ValueError, lambda: Range(1, 10, 0))

    assert 5 in Range(0, oo, 5)
    assert -5 in Range(-oo, 0, 5)
    assert oo not in Range(0, oo)
    ni = symbols('ni', integer=False)
    assert ni not in Range(oo)
    u = symbols('u', integer=None)
    assert Range(oo).contains(u) is not False
    inf = symbols('inf', infinite=True)
    assert inf not in Range(oo)
    inf = symbols('inf', infinite=True)
    assert inf not in Range(oo)
    assert Range(0, oo, 2)[-1] == oo
    assert Range(-oo, 1, 1)[-1] is S.Zero
    assert Range(oo, 1, -1)[-1] == 2
    assert Range(0, -oo, -2)[-1] == -oo
    assert Range(1, 10, 1)[-1] == 9

    it = iter(Range(-oo, 0, 2))
    raises(ValueError, lambda: next(it))

    assert empty.intersect(S.Integers) == empty
    assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
    assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)

    # test slicing
    assert Range(1, 10, 1)[5] == 6
    assert Range(1, 12, 2)[5] == 11
    assert Range(1, 10, 1)[-1] == 9
    assert Range(1, 10, 3)[-1] == 7
    raises(ValueError, lambda: Range(oo,0,-1)[1:3:0])
    raises(ValueError, lambda: Range(oo,0,-1)[:1])
    raises(ValueError, lambda: Range(1, oo)[-2])
    raises(ValueError, lambda: Range(-oo, 1)[2])
    raises(IndexError, lambda: Range(10)[-20])
    raises(IndexError, lambda: Range(10)[20])
    raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
    assert Range(2, -oo, -2)[2:2:2] == empty
    assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
    assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
    assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
    assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
    assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
    assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
    assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
    raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
    assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
    raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
    raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
    assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
    assert Range(oo, 0, -2)[-10:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
    raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
    assert Range(oo, 0, -2)[0:-4:-2] == empty
    assert Range(oo, 0, -2)[:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])

    # test empty Range
    assert empty.reversed == empty
    assert 0 not in empty
    assert list(empty) == []
    assert len(empty) == 0
    assert empty.size is S.Zero
    assert empty.intersect(FiniteSet(0)) is S.EmptySet
    assert bool(empty) is False
    raises(IndexError, lambda: empty[0])
    assert empty[:0] == empty
    raises(NotImplementedError, lambda: empty.inf)
    raises(NotImplementedError, lambda: empty.sup)

    AB = [None] + list(range(12))
    for R in [
            Range(1, 10),
            Range(1, 10, 2),
        ]:
        r = list(R)
        for a, b, c in cartes(AB, AB, [-3, -1, None, 1, 3]):
            for reverse in range(2):
                r = list(reversed(r))
                R = R.reversed
                result = list(R[a:b:c])
                ans = r[a:b:c]
                txt = ('\n%s[%s:%s:%s] = %s -> %s' % (
                R, a, b, c, result, ans))
                check = ans == result
                assert check, txt

    assert Range(1, 10, 1).boundary == Range(1, 10, 1)

    for r in (Range(1, 10, 2), Range(1, oo, 2)):
        rev = r.reversed
        assert r.inf == rev.inf and r.sup == rev.sup
        assert r.step == -rev.step

    # Make sure to use range in Python 3 and xrange in Python 2 (regardless of
    # compatibility imports above)
    if PY3:
        builtin_range = range
    else:
        builtin_range = xrange

    assert Range(builtin_range(10)) == Range(10)
    assert Range(builtin_range(1, 10)) == Range(1, 10)
    assert Range(builtin_range(1, 10, 2)) == Range(1, 10, 2)
    if PY3:
        assert Range(builtin_range(1000000000000)) == \
            Range(1000000000000)
Esempio n. 28
0
def test_torf():
    from sympy.utilities.iterables import cartes
    v = [T, F, U]
    for i in cartes(*[v]*3):
        assert _torf(i) is (True if all(j for j in i) else
                            (False if all(j is False for j in i) else None))
Esempio n. 29
0
def test_true_false():
    assert true is S.true
    assert false is S.false
    assert true is not True
    assert false is not False
    assert true
    assert not false
    assert true == True
    assert false == False
    assert not (true == False)
    assert not (false == True)
    assert not (true == false)

    assert hash(true) == hash(True)
    assert hash(false) == hash(False)
    assert len({true, True}) == len({false, False}) == 1

    assert isinstance(true, BooleanAtom)
    assert isinstance(false, BooleanAtom)
    # We don't want to subclass from bool, because bool subclasses from
    # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
    # 1 then we want them to on true and false.  See the docstrings of the
    # various And, Or, etc. functions for examples.
    assert not isinstance(true, bool)
    assert not isinstance(false, bool)

    # Note: using 'is' comparison is important here. We want these to return
    # true and false, not True and False

    assert Not(true) is false
    assert Not(True) is false
    assert Not(false) is true
    assert Not(False) is true
    assert ~true is false
    assert ~false is true

    for T, F in cartes([True, true], [False, false]):
        assert And(T, F) is false
        assert And(F, T) is false
        assert And(F, F) is false
        assert And(T, T) is true
        assert And(T, x) == x
        assert And(F, x) is false
        if not (T is True and F is False):
            assert T & F is false
            assert F & T is false
        if F is not False:
            assert F & F is false
        if T is not True:
            assert T & T is true

        assert Or(T, F) is true
        assert Or(F, T) is true
        assert Or(F, F) is false
        assert Or(T, T) is true
        assert Or(T, x) is true
        assert Or(F, x) == x
        if not (T is True and F is False):
            assert T | F is true
            assert F | T is true
        if F is not False:
            assert F | F is false
        if T is not True:
            assert T | T is true

        assert Xor(T, F) is true
        assert Xor(F, T) is true
        assert Xor(F, F) is false
        assert Xor(T, T) is false
        assert Xor(T, x) == ~x
        assert Xor(F, x) == x
        if not (T is True and F is False):
            assert T ^ F is true
            assert F ^ T is true
        if F is not False:
            assert F ^ F is false
        if T is not True:
            assert T ^ T is false

        assert Nand(T, F) is true
        assert Nand(F, T) is true
        assert Nand(F, F) is true
        assert Nand(T, T) is false
        assert Nand(T, x) == ~x
        assert Nand(F, x) is true

        assert Nor(T, F) is false
        assert Nor(F, T) is false
        assert Nor(F, F) is true
        assert Nor(T, T) is false
        assert Nor(T, x) is false
        assert Nor(F, x) == ~x

        assert Implies(T, F) is false
        assert Implies(F, T) is true
        assert Implies(F, F) is true
        assert Implies(T, T) is true
        assert Implies(T, x) == x
        assert Implies(F, x) is true
        assert Implies(x, T) is true
        assert Implies(x, F) == ~x
        if not (T is True and F is False):
            assert T >> F is false
            assert F << T is false
            assert F >> T is true
            assert T << F is true
        if F is not False:
            assert F >> F is true
            assert F << F is true
        if T is not True:
            assert T >> T is true
            assert T << T is true

        assert Equivalent(T, F) is false
        assert Equivalent(F, T) is false
        assert Equivalent(F, F) is true
        assert Equivalent(T, T) is true
        assert Equivalent(T, x) == x
        assert Equivalent(F, x) == ~x
        assert Equivalent(x, T) == x
        assert Equivalent(x, F) == ~x

        assert ITE(T, T, T) is true
        assert ITE(T, T, F) is true
        assert ITE(T, F, T) is false
        assert ITE(T, F, F) is false
        assert ITE(F, T, T) is true
        assert ITE(F, T, F) is false
        assert ITE(F, F, T) is true
        assert ITE(F, F, F) is false

    assert all(i.simplify(1, 2) is i for i in (S.true, S.false))
Esempio n. 30
0
def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1,2), [1,2], Point(1,2))
    singles2d2 = ((1,3), [1,3], Point(1,3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1,2)
    singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1,2,3)
    singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1,2,3,4)

    # test 2D
    test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
    test_double = ['is_concyclic', 'is_collinear']
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ['is_collinear']
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ['is_collinear']
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol('x')
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x)
    a = Point(0, 1)
    assert a/10.0 == Point(0.0, 0.1)
    a = Point(0, 1)
    assert a*10.0 == Point(0.0, 10.0)

    # test evaluate=False when changing dimensions
    u = Point(.1, .2, evaluate=False)
    u4 = Point(u, dim=4, on_morph='ignore')
    assert u4.args == (.1, .2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph='error')
Esempio n. 31
0
def test_cartes():
    assert list(cartes([1, 2], [3, 4, 5])) == [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
    assert list(cartes()) == [()]
    assert list(cartes("a")) == [("a",)]
    assert list(cartes("a", repeat=2)) == [("a", "a")]
    assert list(cartes(range(2))) == [(0,), (1,)]
Esempio n. 32
0
def test_Range_set():
    empty = Range(0)

    assert Range(5) == Range(0, 5) == Range(0, 5, 1)

    r = Range(10, 20, 2)
    assert 12 in r
    assert 8 not in r
    assert 11 not in r
    assert 30 not in r

    assert list(Range(0, 5)) == list(range(5))
    assert list(Range(5, 0, -1)) == list(range(5, 0, -1))

    assert Range(5, 15).sup == 14
    assert Range(5, 15).inf == 5
    assert Range(15, 5, -1).sup == 15
    assert Range(15, 5, -1).inf == 6
    assert Range(10, 67, 10).sup == 60
    assert Range(60, 7, -10).inf == 10

    assert len(Range(10, 38, 10)) == 3

    assert Range(0, 0, 5) == empty
    assert Range(oo, oo, 1) == empty
    assert Range(oo, 1, 1) == empty
    assert Range(-oo, 1, -1) == empty
    assert Range(1, oo, -1) == empty
    assert Range(1, -oo, 1) == empty
    assert Range(1, -4, oo) == empty
    assert Range(1, -4, -oo) == Range(1, 2)
    assert Range(1, 4, oo) == Range(1, 2)
    assert Range(-oo, oo).size == oo
    assert Range(oo, -oo, -1).size == oo
    raises(ValueError, lambda: Range(-oo, oo, 2))
    raises(ValueError, lambda: Range(x, pi, y))
    raises(ValueError, lambda: Range(x, y, 0))

    assert 5 in Range(0, oo, 5)
    assert -5 in Range(-oo, 0, 5)
    assert oo not in Range(0, oo)
    ni = symbols('ni', integer=False)
    assert ni not in Range(oo)
    u = symbols('u', integer=None)
    assert Range(oo).contains(u) is not False
    inf = symbols('inf', infinite=True)
    assert inf not in Range(-oo, oo)
    raises(ValueError, lambda: Range(0, oo, 2)[-1])
    raises(ValueError, lambda: Range(0, -oo, -2)[-1])
    assert Range(-oo, 1, 1)[-1] is S.Zero
    assert Range(oo, 1, -1)[-1] == 2
    assert inf not in Range(oo)
    inf = symbols('inf', infinite=True)
    assert inf not in Range(oo)
    assert Range(-oo, 1, 1)[-1] is S.Zero
    assert Range(oo, 1, -1)[-1] == 2
    assert Range(1, 10, 1)[-1] == 9
    assert all(i.is_Integer for i in Range(0, -1, 1))

    it = iter(Range(-oo, 0, 2))
    raises(TypeError, lambda: next(it))

    assert empty.intersect(S.Integers) == empty
    assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1)
    assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1)
    assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1)

    # test slicing
    assert Range(1, 10, 1)[5] == 6
    assert Range(1, 12, 2)[5] == 11
    assert Range(1, 10, 1)[-1] == 9
    assert Range(1, 10, 3)[-1] == 7
    raises(ValueError, lambda: Range(oo, 0, -1)[1:3:0])
    raises(ValueError, lambda: Range(oo, 0, -1)[:1])
    raises(ValueError, lambda: Range(1, oo)[-2])
    raises(ValueError, lambda: Range(-oo, 1)[2])
    raises(IndexError, lambda: Range(10)[-20])
    raises(IndexError, lambda: Range(10)[20])
    raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0])
    assert Range(2, -oo, -2)[2:2:2] == empty
    assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2])
    assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[::2])
    assert Range(oo, 2, -2)[::] == Range(oo, 2, -2)
    assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4)
    assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2])
    assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4)
    raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2])
    raises(ValueError, lambda: Range(-oo, 4, 2)[0::2])
    assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2)
    raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2])
    assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2)
    raises(ValueError, lambda: Range(oo, 2, -2)[0:2:])
    raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1])
    assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4)
    assert Range(oo, 0, -2)[-10:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2])
    raises(ValueError, lambda: Range(oo, 0, -2)[0::-2])
    assert Range(oo, 0, -2)[0:-4:-2] == empty
    assert Range(oo, 0, -2)[:0:2] == empty
    raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1])

    # test empty Range
    assert Range(x, x, y) == empty
    assert empty.reversed == empty
    assert 0 not in empty
    assert list(empty) == []
    assert len(empty) == 0
    assert empty.size is S.Zero
    assert empty.intersect(FiniteSet(0)) is S.EmptySet
    assert bool(empty) is False
    raises(IndexError, lambda: empty[0])
    assert empty[:0] == empty
    raises(NotImplementedError, lambda: empty.inf)
    raises(NotImplementedError, lambda: empty.sup)

    AB = [None] + list(range(12))
    for R in [
            Range(1, 10),
            Range(1, 10, 2),
    ]:
        r = list(R)
        for a, b, c in cartes(AB, AB, [-3, -1, None, 1, 3]):
            for reverse in range(2):
                r = list(reversed(r))
                R = R.reversed
                result = list(R[a:b:c])
                ans = r[a:b:c]
                txt = ('\n%s[%s:%s:%s] = %s -> %s' % (R, a, b, c, result, ans))
                check = ans == result
                assert check, txt

    assert Range(1, 10, 1).boundary == Range(1, 10, 1)

    for r in (Range(1, 10, 2), Range(1, oo, 2)):
        rev = r.reversed
        assert r.inf == rev.inf and r.sup == rev.sup
        assert r.step == -rev.step

    builtin_range = range

    raises(TypeError, lambda: Range(builtin_range(1)))
    assert S(builtin_range(10)) == Range(10)
    assert S(builtin_range(1000000000000)) == Range(1000000000000)

    # test Range.as_relational
    assert Range(1,
                 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(x, floor(x))
    assert Range(oo, 1,
                 -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(x, floor(x))
Esempio n. 33
0
def symbols(names, **args):
    """
    Transform strings into instances of :class:`Symbol` class.

    :func:`symbols` function returns a sequence of symbols with names taken
    from ``names`` argument, which can be a comma or whitespace delimited
    string, or a sequence of strings::

        >>> from sympy import symbols, Function

        >>> x, y, z = symbols('x,y,z')
        >>> a, b, c = symbols('a b c')

    The type of output is dependent on the properties of input arguments::

        >>> symbols('x')
        x
        >>> symbols('x,')
        (x,)
        >>> symbols('x,y')
        (x, y)
        >>> symbols(('a', 'b', 'c'))
        (a, b, c)
        >>> symbols(['a', 'b', 'c'])
        [a, b, c]
        >>> symbols(set(['a', 'b', 'c']))
        set([a, b, c])

    If an iterable container is needed for a single symbol, set the ``seq``
    argument to ``True`` or terminate the symbol name with a comma::

        >>> symbols('x', seq=True)
        (x,)

    To reduce typing, range syntax is supported to create indexed symbols.
    Ranges are indicated by a colon and the type of range is determined by
    the character to the right of the colon. If the character is a digit
    then all contiguous digits to the left are taken as the nonnegative
    starting value (or 0 if there is no digit left of the colon) and all
    contiguous digits to the right are taken as 1 greater than the ending
    value::

        >>> symbols('x:10')
        (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

        >>> symbols('x5:10')
        (x5, x6, x7, x8, x9)
        >>> symbols('x5(:2)')
        (x50, x51)

        >>> symbols('x5:10,y:5')
        (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)

        >>> symbols(('x5:10', 'y:5'))
        ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))

    If the character to the right of the colon is a letter, then the single
    letter to the left (or 'a' if there is none) is taken as the start
    and all characters in the lexicographic range *through* the letter to
    the right are used as the range::

        >>> symbols('x:z')
        (x, y, z)
        >>> symbols('x:c')  # null range
        ()
        >>> symbols('x(:c)')
        (xa, xb, xc)

        >>> symbols(':c')
        (a, b, c)

        >>> symbols('a:d, x:z')
        (a, b, c, d, x, y, z)

        >>> symbols(('a:d', 'x:z'))
        ((a, b, c, d), (x, y, z))

    Multiple ranges are supported; contiguous numerical ranges should be
    separated by parentheses to disambiguate the ending number of one
    range from the starting number of the next::

        >>> symbols('x:2(1:3)')
        (x01, x02, x11, x12)
        >>> symbols(':3:2')  # parsing is from left to right
        (00, 01, 10, 11, 20, 21)

    Only one pair of parentheses surrounding ranges are removed, so to
    include parentheses around ranges, double them. And to include spaces,
    commas, or colons, escape them with a backslash::

        >>> symbols('x((a:b))')
        (x(a), x(b))
        >>> symbols('x(:1\,:2)')  # or 'x((:1)\,(:2))'
        (x(0,0), x(0,1))

    All newly created symbols have assumptions set according to ``args``::

        >>> a = symbols('a', integer=True)
        >>> a.is_integer
        True

        >>> x, y, z = symbols('x,y,z', real=True)
        >>> x.is_real and y.is_real and z.is_real
        True

    Despite its name, :func:`symbols` can create symbol-like objects like
    instances of Function or Wild classes. To achieve this, set ``cls``
    keyword argument to the desired type::

        >>> symbols('f,g,h', cls=Function)
        (f, g, h)

        >>> type(_[0])
        <class 'sympy.core.function.UndefinedFunction'>

    """
    result = []

    if isinstance(names, string_types):
        marker = 0
        literals = ['\,', '\:', '\ ']
        for i in range(len(literals)):
            lit = literals.pop(0)
            if lit in names:
                while chr(marker) in names:
                    marker += 1
                lit_char = chr(marker)
                marker += 1
                names = names.replace(lit, lit_char)
                literals.append((lit_char, lit[1:]))
        def literal(s):
            if literals:
                for c, l in literals:
                    s = s.replace(c, l)
            return s

        names = names.strip()
        as_seq = names.endswith(',')
        if as_seq:
            names = names[:-1].rstrip()
        if not names:
            raise ValueError('no symbols given')

        # split on commas
        names = [n.strip() for n in names.split(',')]
        if not all(n for n in names):
            raise ValueError('missing symbol between commas')
        # split on spaces
        for i in range(len(names) - 1, -1, -1):
            names[i: i + 1] = names[i].split()

        cls = args.pop('cls', Symbol)
        seq = args.pop('seq', as_seq)

        for name in names:
            if not name:
                raise ValueError('missing symbol')

            if ':' not in name:
                symbol = cls(literal(name), **args)
                result.append(symbol)
                continue

            split = _range.split(name)
            # remove 1 layer of bounding parentheses around ranges
            for i in range(len(split) - 1):
                if i and ':' in split[i] and split[i] != ':' and \
                        split[i - 1].endswith('(') and \
                        split[i + 1].startswith(')'):
                    split[i - 1] = split[i - 1][:-1]
                    split[i + 1] = split[i + 1][1:]
            for i, s in enumerate(split):
                if ':' in s:
                    if s[-1].endswith(':'):
                        raise ValueError('missing end range')
                    a, b = s.split(':')
                    if b[-1] in string.digits:
                        a = 0 if not a else int(a)
                        b = int(b)
                        split[i] = [str(c) for c in range(a, b)]
                    else:
                        a = a or 'a'
                        split[i] = [string.ascii_letters[c] for c in range(
                            string.ascii_letters.index(a),
                            string.ascii_letters.index(b) + 1)]  # inclusive
                    if not split[i]:
                        break
                else:
                    split[i] = [s]
            else:
                seq = True
                if len(split) == 1:
                    names = split[0]
                else:
                    names = [''.join(s) for s in cartes(*split)]
                if literals:
                    result.extend([cls(literal(s), **args) for s in names])
                else:
                    result.extend([cls(s, **args) for s in names])

        if not seq and len(result) <= 1:
            if not result:
                return ()
            return result[0]

        return tuple(result)
    else:
        for name in names:
            result.append(symbols(name, **args))

        return type(names)(result)
def test_torf():
    from sympy.utilities.iterables import cartes
    v = [T, F, U]
    for i in cartes(*[v]*3):
        assert _torf(i) is (
            True if all(j for j in i) else (False if all(j is False for j in i) else None))