Esempio n. 1
0
def test_locatenew_point():
    """
    Tests Point class, and locate_new method in CoordSysCartesian.
    """
    A = CoordSysCartesian('A')
    assert isinstance(A.origin, Point)
    v = a * A.i + b * A.j + c * A.k
    C = A.locate_new('C', v)
    assert C.origin.position_wrt(A) == \
           C.position_wrt(A) == \
           C.origin.position_wrt(A.origin) == v
    assert A.origin.position_wrt(C) == \
           A.position_wrt(C) == \
           A.origin.position_wrt(C.origin) == -v
    assert A.origin.express_coordinates(C) == (-a, -b, -c)
    p = A.origin.locate_new('p', -v)
    assert p.express_coordinates(A) == (-a, -b, -c)
    assert p.position_wrt(C.origin) == p.position_wrt(C) == \
           -2 * v
    p1 = p.locate_new('p1', 2 * v)
    assert p1.position_wrt(C.origin) == Vector.zero
    assert p1.express_coordinates(C) == (0, 0, 0)
    p2 = p.locate_new('p2', A.i)
    assert p1.position_wrt(p2) == 2 * v - A.i
    assert p2.express_coordinates(C) == (-2 * a + 1, -2 * b, -2 * c)
def test_locatenew_point():
    """
    Tests Point class, and locate_new method in CoordSysCartesian.
    """
    A = CoordSysCartesian('A')
    assert isinstance(A.origin, Point)
    v = a*A.i + b*A.j + c*A.k
    C = A.locate_new('C', v)
    assert C.origin.position_wrt(A) == \
           C.position_wrt(A) == \
           C.origin.position_wrt(A.origin) == v
    assert A.origin.position_wrt(C) == \
           A.position_wrt(C) == \
           A.origin.position_wrt(C.origin) == -v
    assert A.origin.express_coordinates(C) == (-a, -b, -c)
    p = A.origin.locate_new('p', -v)
    assert p.express_coordinates(A) == (-a, -b, -c)
    assert p.position_wrt(C.origin) == p.position_wrt(C) == \
           -2 * v
    p1 = p.locate_new('p1', 2*v)
    assert p1.position_wrt(C.origin) == Vector.zero
    assert p1.express_coordinates(C) == (0, 0, 0)
    p2 = p.locate_new('p2', A.i)
    assert p1.position_wrt(p2) == 2*v - A.i
    assert p2.express_coordinates(C) == (-2*a + 1, -2*b, -2*c)
def test_vector():
    """
    Tests the effects of orientation of coordinate systems on
    basic vector operations.
    """
    N = CoordSysCartesian("N")
    A = N.orient_new_axis("A", q1, N.k)
    B = A.orient_new_axis("B", q2, A.i)
    C = B.orient_new_axis("C", q3, B.j)

    # Test to_matrix
    v1 = a * N.i + b * N.j + c * N.k
    assert v1.to_matrix(A) == Matrix([[a * cos(q1) + b * sin(q1)], [-a * sin(q1) + b * cos(q1)], [c]])

    # Test dot
    assert N.i.dot(A.i) == cos(q1)
    assert N.i.dot(A.j) == -sin(q1)
    assert N.i.dot(A.k) == 0
    assert N.j.dot(A.i) == sin(q1)
    assert N.j.dot(A.j) == cos(q1)
    assert N.j.dot(A.k) == 0
    assert N.k.dot(A.i) == 0
    assert N.k.dot(A.j) == 0
    assert N.k.dot(A.k) == 1

    assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == (A.i + A.j).dot(N.i)

    assert A.i.dot(C.i) == cos(q3)
    assert A.i.dot(C.j) == 0
    assert A.i.dot(C.k) == sin(q3)
    assert A.j.dot(C.i) == sin(q2) * sin(q3)
    assert A.j.dot(C.j) == cos(q2)
    assert A.j.dot(C.k) == -sin(q2) * cos(q3)
    assert A.k.dot(C.i) == -cos(q2) * sin(q3)
    assert A.k.dot(C.j) == sin(q2)
    assert A.k.dot(C.k) == cos(q2) * cos(q3)

    # Test cross
    assert N.i.cross(A.i) == sin(q1) * A.k
    assert N.i.cross(A.j) == cos(q1) * A.k
    assert N.i.cross(A.k) == -sin(q1) * A.i - cos(q1) * A.j
    assert N.j.cross(A.i) == -cos(q1) * A.k
    assert N.j.cross(A.j) == sin(q1) * A.k
    assert N.j.cross(A.k) == cos(q1) * A.i - sin(q1) * A.j
    assert N.k.cross(A.i) == A.j
    assert N.k.cross(A.j) == -A.i
    assert N.k.cross(A.k) == Vector.zero

    assert N.i.cross(A.i) == sin(q1) * A.k
    assert N.i.cross(A.j) == cos(q1) * A.k
    assert N.i.cross(A.i + A.j) == sin(q1) * A.k + cos(q1) * A.k
    assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1)) * N.k

    assert A.i.cross(C.i) == sin(q3) * C.j
    assert A.i.cross(C.j) == -sin(q3) * C.i + cos(q3) * C.k
    assert A.i.cross(C.k) == -cos(q3) * C.j
    assert C.i.cross(A.i) == (-sin(q3) * cos(q2)) * A.j + (-sin(q2) * sin(q3)) * A.k
    assert C.j.cross(A.i) == (sin(q2)) * A.j + (-cos(q2)) * A.k
    assert express(C.k.cross(A.i), C).trigsimp() == cos(q3) * C.j
Esempio n. 4
0
def test_coordsyscartesian_equivalence():
    A1 = CoordSysCartesian('A')
    assert A1 == A
    B = CoordSysCartesian('B')
    assert A != B
    assert A.locate_new('C1', A.i) == A.locate_new('C2', A.i)
    assert A.orient_new_axis('C1', a, A.i) == \
           A.orient_new_axis('C2', a, A.i)
def test_coordsyscartesian_equivalence():
    A = CoordSysCartesian("A")
    A1 = CoordSysCartesian("A")
    assert A1 == A
    B = CoordSysCartesian("B")
    assert A != B
    assert A.locate_new("C1", A.i) == A.locate_new("C2", A.i)
    assert A.orient_new_axis("C1", a, A.i) == A.orient_new_axis("C2", a, A.i)
Esempio n. 6
0
def test_coordsyscartesian_equivalence():
    A = CoordSysCartesian('A')
    A1 = CoordSysCartesian('A')
    assert A1 == A
    B = CoordSysCartesian('B')
    assert A != B
    assert A.locate_new('C1', A.i) == A.locate_new('C2', A.i)
    assert A.orient_new_axis('C1', a, A.i) == \
           A.orient_new_axis('C2', a, A.i)
Esempio n. 7
0
def test_orient_new_methods():
    N = CoordSysCartesian('N')
    D = N.orient_new('D', 'Axis', [q4, N.j])
    E = N.orient_new('E', 'Space', [q1, q2, q3], '123')
    F = N.orient_new('F', 'Quaternion', [q1, q2, q3, q4])
    G = N.orient_new('G', 'Body', [q1, q2, q3], '123')
    assert D == N.orient_new_axis('D', q4, N.j)
    assert E == N.orient_new_space('E', q1, q2, q3, '123')
    assert F == N.orient_new_quaternion('F', q1, q2, q3, q4)
    assert G == N.orient_new_body('G', q1, q2, q3, '123')
Esempio n. 8
0
def test_differential_operators_curvilinear_system():
    A = CoordSysCartesian('A')
    A._set_lame_coefficient_mapping('spherical')
    B = CoordSysCartesian('B')
    B._set_lame_coefficient_mapping('cylindrical')
    # Test for spherical coordinate system and gradient
    assert gradient(3 * A.x + 4 * A.y) == 3 * A.i + 4 / A.x * A.j
    assert gradient(
        3 * A.x * A.z +
        4 * A.y) == 3 * A.z * A.i + 4 / A.x * A.j + (3 / sin(A.y)) * A.k
    assert gradient(0 * A.x + 0 * A.y + 0 * A.z) == Vector.zero
    assert gradient(
        A.x * A.y *
        A.z) == A.y * A.z * A.i + A.z * A.j + (A.y / sin(A.y)) * A.k
    # Test for spherical coordinate system and divergence
    assert divergence(A.x * A.i + A.y * A.j + A.z * A.k) == \
           (sin(A.y)*A.x + cos(A.y)*A.x*A.y)/(sin(A.y)*A.x**2) + 3 + 1/(sin(A.y)*A.x)
    assert divergence(3*A.x*A.z*A.i + A.y*A.j + A.x*A.y*A.z*A.k) == \
           (sin(A.y)*A.x + cos(A.y)*A.x*A.y)/(sin(A.y)*A.x**2) + 9*A.z + A.y/sin(A.y)
    assert divergence(Vector.zero) == 0
    assert divergence(0 * A.i + 0 * A.j + 0 * A.k) == 0
    # Test for cylindrical coordinate system and divergence
    assert divergence(B.x * B.i + B.y * B.j + B.z * B.k) == 2 + 1 / B.y
    assert divergence(B.x * B.j + B.z * B.k) == 1
    # Test for spherical coordinate system and divergence
    assert curl(A.x*A.i + A.y*A.j + A.z*A.k) == \
           (cos(A.y)*A.z/(sin(A.y)*A.x))*A.i + (-A.z/A.x)*A.j + A.y/A.x*A.k
    assert curl(A.x * A.j + A.z *
                A.k) == (cos(A.y) * A.z /
                         (sin(A.y) * A.x)) * A.i + (-A.z / A.x) * A.j + 2 * A.k
Esempio n. 9
0
def test_orienters():
    A = CoordSysCartesian('A')
    axis_orienter = AxisOrienter(a, A.k)
    body_orienter = BodyOrienter(a, b, c, '123')
    space_orienter = SpaceOrienter(a, b, c, '123')
    q_orienter = QuaternionOrienter(q1, q2, q3, q4)
    assert axis_orienter.rotation_matrix(A) == Matrix([
        [ cos(a), sin(a), 0],
        [-sin(a), cos(a), 0],
        [      0,      0, 1]])
    assert body_orienter.rotation_matrix() == Matrix([
        [ cos(b)*cos(c),  sin(a)*sin(b)*cos(c) + sin(c)*cos(a),
          sin(a)*sin(c) - sin(b)*cos(a)*cos(c)],
        [-sin(c)*cos(b), -sin(a)*sin(b)*sin(c) + cos(a)*cos(c),
         sin(a)*cos(c) + sin(b)*sin(c)*cos(a)],
        [        sin(b),                        -sin(a)*cos(b),
                 cos(a)*cos(b)]])
    assert space_orienter.rotation_matrix() == Matrix([
        [cos(b)*cos(c), sin(c)*cos(b),       -sin(b)],
        [sin(a)*sin(b)*cos(c) - sin(c)*cos(a),
         sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(b)],
        [sin(a)*sin(c) + sin(b)*cos(a)*cos(c), -sin(a)*cos(c) +
         sin(b)*sin(c)*cos(a), cos(a)*cos(b)]])
    assert q_orienter.rotation_matrix() == Matrix([
        [q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3,
         -2*q1*q3 + 2*q2*q4],
        [-2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2,
         2*q1*q2 + 2*q3*q4],
        [2*q1*q3 + 2*q2*q4,
         -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]])
Esempio n. 10
0
def test_orthogonalize():
    C = CoordSysCartesian('C')
    a, b = symbols('a b', integer=True)
    i, j, k = C.base_vectors()
    v1 = i + 2*j
    v2 = 2*i + 3*j
    v3 = 3*i + 5*j
    v4 = 3*i + j
    v5 = 2*i + 2*j
    v6 = a*i + b*j
    v7 = 4*a*i + 4*b*j
    assert orthogonalize(v1, v2) == [C.i + 2*C.j, 2*C.i/5 + -C.j/5]
    # from wikipedia
    assert orthogonalize(v4, v5, orthonormal=True) == \
        [(3*sqrt(10))*C.i/10 + (sqrt(10))*C.j/10, (-sqrt(10))*C.i/10 + (3*sqrt(10))*C.j/10]
    raises(ValueError, lambda: orthogonalize(v1, v2, v3))
    raises(ValueError, lambda: orthogonalize(v6, v7))
Esempio n. 11
0
def test_orthogonalize():
    C = CoordSysCartesian('C')
    a, b = symbols('a b', integer=True);
    i, j, k = C.base_vectors()
    v1 = i + 2*j
    v2 = 2*i + 3*j
    v3 = 3*i + 5*j
    v4 = 3*i + j
    v5 = 2*i + 2*j
    v6 = a*i + b*j
    v7 = 4*a*i + 4*b*j
    assert orthogonalize(v1, v2) == [C.i + 2*C.j, 2*C.i/5 + -C.j/5]
    # from wikipedia
    assert orthogonalize(v4, v5, orthonormal=True) == \
        [(3*sqrt(10))*C.i/10 + (sqrt(10))*C.j/10, (-sqrt(10))*C.i/10 + (3*sqrt(10))*C.j/10]
    raises(ValueError, lambda: orthogonalize(v1, v2, v3))
    raises(ValueError, lambda: orthogonalize(v6, v7))
Esempio n. 12
0
def test_func_args():
    A = CoordSysCartesian('A')
    assert A.x.func(*A.x.args) == A.x
    expr = 3 * A.x + 4 * A.y
    assert expr.func(*expr.args) == expr
    assert A.i.func(*A.i.args) == A.i
    v = A.x * A.i + A.y * A.j + A.z * A.k
    assert v.func(*v.args) == v
    assert A.origin.func(*A.origin.args) == A.origin
Esempio n. 13
0
def test_orient_new_methods():
    N = CoordSysCartesian('N')
    orienter1 = AxisOrienter(q4, N.j)
    orienter2 = SpaceOrienter(q1, q2, q3, '123')
    orienter3 = QuaternionOrienter(q1, q2, q3, q4)
    orienter4 = BodyOrienter(q1, q2, q3, '123')
    D = N.orient_new('D', (orienter1, ))
    E = N.orient_new('E', (orienter2, ))
    F = N.orient_new('F', (orienter3, ))
    G = N.orient_new('G', (orienter4, ))
    assert D == N.orient_new_axis('D', q4, N.j)
    assert E == N.orient_new_space('E', q1, q2, q3, '123')
    assert F == N.orient_new_quaternion('F', q1, q2, q3, q4)
    assert G == N.orient_new_body('G', q1, q2, q3, '123')
Esempio n. 14
0
def test_rotation_matrix():
    N = CoordSysCartesian('N')
    A = N.orient_new_axis('A', q1, N.k)
    B = A.orient_new_axis('B', q2, A.i)
    C = B.orient_new_axis('C', q3, B.j)
    D = N.orient_new_axis('D', q4, N.j)
    E = N.orient_new_space('E', q1, q2, q3, '123')
    F = N.orient_new_quaternion('F', q1, q2, q3, q4)
    G = N.orient_new_body('G', q1, q2, q3, '123')
    assert N.rotation_matrix(C) == Matrix([
        [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
        cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \
        [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \
         cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \
         cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]])
    test_mat = D.rotation_matrix(C) - Matrix(
        [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
        sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
            cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \
          (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \
         [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \
          cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \
         [sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \
                                                   sin(q1) * sin(q2) * \
                                                   sin(q4)), sin(q2) *
                cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \
          sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \
                                         sin(q1) * sin(q2) * sin(q4))]])
    assert test_mat.expand() == zeros(3, 3)
    assert E.rotation_matrix(N) == Matrix(
        [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
        [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \
         sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \
         [sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \
          sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]])
    assert F.rotation_matrix(N) == Matrix([[
        q1**2 + q2**2 - q3**2 - q4**2,
        2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3,
            q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4],
                                           [2*q1*q3 + 2*q2*q4,
                                            -2*q1*q2 + 2*q3*q4,
                                q1**2 - q2**2 - q3**2 + q4**2]])
    assert G.rotation_matrix(N) == Matrix([[
        cos(q2)*cos(q3),  sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1),
        sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [
            -sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3),
            sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[
                sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]])
Esempio n. 15
0
def test_orient_new_methods():
    N = CoordSysCartesian('N')
    orienter1 = AxisOrienter(q4, N.j)
    orienter2 = SpaceOrienter(q1, q2, q3, '123')
    orienter3 = QuaternionOrienter(q1, q2, q3, q4)
    orienter4 = BodyOrienter(q1, q2, q3, '123')
    D = N.orient_new('D', (orienter1, ))
    E = N.orient_new('E', (orienter2, ))
    F = N.orient_new('F', (orienter3, ))
    G = N.orient_new('G', (orienter4, ))
    assert D == N.orient_new_axis('D', q4, N.j)
    assert E == N.orient_new_space('E', q1, q2, q3, '123')
    assert F == N.orient_new_quaternion('F', q1, q2, q3, q4)
    assert G == N.orient_new_body('G', q1, q2, q3, '123')
Esempio n. 16
0
def test_orient_new_methods():
    N = CoordSysCartesian("N")
    orienter1 = AxisOrienter(q4, N.j)
    orienter2 = SpaceOrienter(q1, q2, q3, "123")
    orienter3 = QuaternionOrienter(q1, q2, q3, q4)
    orienter4 = BodyOrienter(q1, q2, q3, "123")
    D = N.orient_new("D", (orienter1,))
    E = N.orient_new("E", (orienter2,))
    F = N.orient_new("F", (orienter3,))
    G = N.orient_new("G", (orienter4,))
    assert D == N.orient_new_axis("D", q4, N.j)
    assert E == N.orient_new_space("E", q1, q2, q3, "123")
    assert F == N.orient_new_quaternion("F", q1, q2, q3, q4)
    assert G == N.orient_new_body("G", q1, q2, q3, "123")
Esempio n. 17
0
def test_rotation_matrix():
    N = CoordSysCartesian('N')
    A = N.orient_new_axis('A', q1, N.k)
    B = A.orient_new_axis('B', q2, A.i)
    C = B.orient_new_axis('C', q3, B.j)
    D = N.orient_new_axis('D', q4, N.j)
    E = N.orient_new_space('E', q1, q2, q3, '123')
    F = N.orient_new_quaternion('F', q1, q2, q3, q4)
    G = N.orient_new_body('G', q1, q2, q3, '123')
    assert N.rotation_matrix(C) == Matrix([
        [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
        cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \
        [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \
         cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \
         cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]])
    test_mat = D.rotation_matrix(C) - Matrix(
        [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
        sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
            cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \
          (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \
         [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \
          cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \
         [sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \
                                                   sin(q1) * sin(q2) * \
                                                   sin(q4)), sin(q2) *
                cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \
          sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \
                                         sin(q1) * sin(q2) * sin(q4))]])
    assert test_mat.expand() == zeros(3, 3)
    assert E.rotation_matrix(N) == Matrix(
        [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
        [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \
         sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \
         [sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \
          sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]])
    assert F.rotation_matrix(N) == Matrix([[
        q1**2 + q2**2 - q3**2 - q4**2,
        2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3,
            q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4],
                                           [2*q1*q3 + 2*q2*q4,
                                            -2*q1*q2 + 2*q3*q4,
                                q1**2 - q2**2 - q3**2 + q4**2]])
    assert G.rotation_matrix(N) == Matrix([[
        cos(q2)*cos(q3),  sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1),
        sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [
            -sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3),
            sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[
                sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]])
Esempio n. 18
0
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.vector.functions import express, matrix_to_vector
from sympy import symbols, S, sin, cos, ImmutableMatrix as Matrix

N = CoordSysCartesian('N')
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
A = N.orient_new_axis('A', q1, N.k)
B = A.orient_new_axis('B', q2, A.i)
C = B.orient_new_axis('C', q3, B.j)


def test_express():
    assert express(Vector.zero, N) == Vector.zero
    assert express(S(0), N) == S(0)
    assert express(A.i, C) == cos(q3) * C.i + sin(q3) * C.k
    assert express(A.j, C) == sin(q2)*sin(q3)*C.i + cos(q2)*C.j - \
        sin(q2)*cos(q3)*C.k
    assert express(A.k, C) == -sin(q3)*cos(q2)*C.i + sin(q2)*C.j + \
        cos(q2)*cos(q3)*C.k
    assert express(A.i, N) == cos(q1) * N.i + sin(q1) * N.j
    assert express(A.j, N) == -sin(q1) * N.i + cos(q1) * N.j
    assert express(A.k, N) == N.k
    assert express(A.i, A) == A.i
    assert express(A.j, A) == A.j
    assert express(A.k, A) == A.k
    assert express(A.i, B) == B.i
    assert express(A.j, B) == cos(q2) * B.j - sin(q2) * B.k
    assert express(A.k, B) == sin(q2) * B.j + cos(q2) * B.k
    assert express(A.i, C) == cos(q3) * C.i + sin(q3) * C.k
    assert express(A.j, C) == sin(q2)*sin(q3)*C.i + cos(q2)*C.j - \
Esempio n. 19
0
from sympy.core.function import Derivative
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy import sin, cos
from sympy.vector.functions import (curl, divergence, gradient,
                                    is_conservative, is_solenoidal,
                                    scalar_potential,
                                    scalar_potential_difference)
from sympy.utilities.pytest import raises

C = CoordSysCartesian('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = C.delop
a, b, c, q = symbols('a b c q')


def test_del_operator():

    #Tests for curl
    assert (delop
            ^ Vector.zero == (Derivative(0, C.y) - Derivative(0, C.z)) * C.i +
            (-Derivative(0, C.x) + Derivative(0, C.z)) * C.j +
            (Derivative(0, C.x) - Derivative(0, C.y)) * C.k)
    assert ((delop ^ Vector.zero).doit() == Vector.zero == curl(
        Vector.zero, C))
    assert delop.cross(Vector.zero) == delop ^ Vector.zero
    assert (delop ^ i).doit() == Vector.zero
Esempio n. 20
0
def test_coordinate_vars():
    """
    Tests the coordinate variables functionality with respect to
    reorientation of coordinate systems.
    """
    A = CoordSysCartesian("A")
    assert BaseScalar("Ax", 0, A, " ", " ") == A.x
    assert BaseScalar("Ay", 1, A, " ", " ") == A.y
    assert BaseScalar("Az", 2, A, " ", " ") == A.z
    assert BaseScalar("Ax", 0, A, " ", " ").__hash__() == A.x.__hash__()
    assert isinstance(A.x, BaseScalar) and isinstance(A.y, BaseScalar) and isinstance(A.z, BaseScalar)
    assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
    assert A.x.system == A
    B = A.orient_new_axis("B", q, A.k)
    assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x * sin(q) + A.y * cos(q), B.x: A.x * cos(q) + A.y * sin(q)}
    assert A.scalar_map(B) == {A.x: B.x * cos(q) - B.y * sin(q), A.y: B.x * sin(q) + B.y * cos(q), A.z: B.z}
    assert express(B.x, A, variables=True) == A.x * cos(q) + A.y * sin(q)
    assert express(B.y, A, variables=True) == -A.x * sin(q) + A.y * cos(q)
    assert express(B.z, A, variables=True) == A.z
    assert express(B.x * B.y * B.z, A, variables=True) == A.z * (-A.x * sin(q) + A.y * cos(q)) * (
        A.x * cos(q) + A.y * sin(q)
    )
    assert (
        express(B.x * B.i + B.y * B.j + B.z * B.k, A)
        == (B.x * cos(q) - B.y * sin(q)) * A.i + (B.x * sin(q) + B.y * cos(q)) * A.j + B.z * A.k
    )
    assert simplify(express(B.x * B.i + B.y * B.j + B.z * B.k, A, variables=True)) == A.x * A.i + A.y * A.j + A.z * A.k
    assert (
        express(A.x * A.i + A.y * A.j + A.z * A.k, B)
        == (A.x * cos(q) + A.y * sin(q)) * B.i + (-A.x * sin(q) + A.y * cos(q)) * B.j + A.z * B.k
    )
    assert simplify(express(A.x * A.i + A.y * A.j + A.z * A.k, B, variables=True)) == B.x * B.i + B.y * B.j + B.z * B.k
    N = B.orient_new_axis("N", -q, B.k)
    assert N.scalar_map(A) == {N.x: A.x, N.z: A.z, N.y: A.y}
    C = A.orient_new_axis("C", q, A.i + A.j + A.k)
    mapping = A.scalar_map(C)
    assert (
        mapping[A.x]
        == 2 * C.x * cos(q) / 3
        + C.x / 3
        - 2 * C.y * sin(q + pi / 6) / 3
        + C.y / 3
        - 2 * C.z * cos(q + pi / 3) / 3
        + C.z / 3
    )
    assert (
        mapping[A.y]
        == -2 * C.x * cos(q + pi / 3) / 3
        + C.x / 3
        + 2 * C.y * cos(q) / 3
        + C.y / 3
        - 2 * C.z * sin(q + pi / 6) / 3
        + C.z / 3
    )
    assert (
        mapping[A.z]
        == -2 * C.x * sin(q + pi / 6) / 3
        + C.x / 3
        - 2 * C.y * cos(q + pi / 3) / 3
        + C.y / 3
        + 2 * C.z * cos(q) / 3
        + C.z / 3
    )
    D = A.locate_new("D", a * A.i + b * A.j + c * A.k)
    assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
    E = A.orient_new_axis("E", a, A.k, a * A.i + b * A.j + c * A.k)
    assert A.scalar_map(E) == {A.z: E.z + c, A.x: E.x * cos(a) - E.y * sin(a) + a, A.y: E.x * sin(a) + E.y * cos(a) + b}
    assert E.scalar_map(A) == {
        E.x: (A.x - a) * cos(a) + (A.y - b) * sin(a),
        E.y: (-A.x + a) * sin(a) + (A.y - b) * cos(a),
        E.z: A.z - c,
    }
    F = A.locate_new("F", Vector.zero)
    assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
Esempio n. 21
0
def test_transformation_equations():
    from sympy import symbols
    x, y, z = symbols('x y z')
    a = CoordSysCartesian('a')
    # Str
    a._connect_to_standard_cartesian('spherical')
    assert a._transformation_equations() == (a.x * sin(a.y) * cos(a.z),
                                             a.x * sin(a.y) * sin(a.z),
                                             a.x * cos(a.y))
    assert a.lame_coefficients() == (1, a.x, a.x * sin(a.y))
    a._connect_to_standard_cartesian('cylindrical')
    assert a._transformation_equations() == (a.x * cos(a.y), a.x * sin(a.y),
                                             a.z)
    assert a.lame_coefficients() == (1, a.y, 1)
    a._connect_to_standard_cartesian('cartesian')
    assert a._transformation_equations() == (a.x, a.y, a.z)
    assert a.lame_coefficients() == (1, 1, 1)
    # Variables and expressions
    a._connect_to_standard_cartesian(((x, y, z), (x, y, z)))
    assert a._transformation_equations() == (a.x, a.y, a.z)
    assert a.lame_coefficients() == (1, 1, 1)
    a._connect_to_standard_cartesian(
        ((x, y, z), ((x * cos(y), x * sin(y), z))))
    assert a._transformation_equations() == (a.x * cos(a.y), a.x * sin(a.y),
                                             a.z)
    assert simplify(a.lame_coefficients()) == (1, sqrt(a.x**2), 1)
    a._connect_to_standard_cartesian(
        ((x, y, z), (x * sin(y) * cos(z), x * sin(y) * sin(z), x * cos(y))))
    assert a._transformation_equations() == (a.x * sin(a.y) * cos(a.z),
                                             a.x * sin(a.y) * sin(a.z),
                                             a.x * cos(a.y))
    assert simplify(a.lame_coefficients()) == (1, sqrt(a.x**2),
                                               sqrt(sin(a.y)**2 * a.x**2))
    # Equations
    a._connect_to_standard_cartesian(
        (a.x * sin(a.y) * cos(a.z), a.x * sin(a.y) * sin(a.z), a.x * cos(a.y)))
    assert a._transformation_equations() == (a.x * sin(a.y) * cos(a.z),
                                             a.x * sin(a.y) * sin(a.z),
                                             a.x * cos(a.y))
    assert simplify(a.lame_coefficients()) == (1, sqrt(a.x**2),
                                               sqrt(sin(a.y)**2 * a.x**2))
    a._connect_to_standard_cartesian((a.x, a.y, a.z))
    assert a._transformation_equations() == (a.x, a.y, a.z)
    assert simplify(a.lame_coefficients()) == (1, 1, 1)
    a._connect_to_standard_cartesian((a.x * cos(a.y), a.x * sin(a.y), a.z))
    assert a._transformation_equations() == (a.x * cos(a.y), a.x * sin(a.y),
                                             a.z)
    assert simplify(a.lame_coefficients()) == (1, sqrt(a.x**2), 1)
Esempio n. 22
0
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.vector.functions import express, matrix_to_vector
from sympy import symbols, S, sin, cos, ImmutableMatrix as Matrix

N = CoordSysCartesian('N')
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
A = N.orient_new('A', 'Axis', [q1, N.k])
B = A.orient_new('B', 'Axis', [q2, A.i])
C = B.orient_new('C', 'Axis', [q3, B.j])


def test_express():
    assert express(Vector.zero, N) == Vector.zero
    assert express(S(0), N) == S(0)
    assert express(A.i, C) == cos(q3) * C.i + sin(q3) * C.k
    assert express(A.j, C) == sin(q2)*sin(q3)*C.i + cos(q2)*C.j - \
        sin(q2)*cos(q3)*C.k
    assert express(A.k, C) == -sin(q3)*cos(q2)*C.i + sin(q2)*C.j + \
        cos(q2)*cos(q3)*C.k
    assert express(A.i, N) == cos(q1) * N.i + sin(q1) * N.j
    assert express(A.j, N) == -sin(q1) * N.i + cos(q1) * N.j
    assert express(A.k, N) == N.k
    assert express(A.i, A) == A.i
    assert express(A.j, A) == A.j
    assert express(A.k, A) == A.k
    assert express(A.i, B) == B.i
    assert express(A.j, B) == cos(q2) * B.j - sin(q2) * B.k
    assert express(A.k, B) == sin(q2) * B.j + cos(q2) * B.k
    assert express(A.i, C) == cos(q3) * C.i + sin(q3) * C.k
    assert express(A.j, C) == sin(q2)*sin(q3)*C.i + cos(q2)*C.j - \
Esempio n. 23
0
def test_coordinate_vars():
    """
    Tests the coordinate variables functionality with respect to
    reorientation of coordinate systems.
    """
    A = CoordSysCartesian('A')
    assert BaseScalar('Ax', 0, A, ' ', ' ') == A.x
    assert BaseScalar('Ay', 1, A, ' ', ' ') == A.y
    assert BaseScalar('Az', 2, A, ' ', ' ') == A.z
    assert BaseScalar('Ax', 0, A, ' ', ' ').__hash__() == A.x.__hash__()
    assert isinstance(A.x, BaseScalar) and \
           isinstance(A.y, BaseScalar) and \
           isinstance(A.z, BaseScalar)
    assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
    assert A.x.system == A
    B = A.orient_new_axis('B', q, A.k)
    assert B.scalar_map(A) == {
        B.z: A.z,
        B.y: -A.x * sin(q) + A.y * cos(q),
        B.x: A.x * cos(q) + A.y * sin(q)
    }
    assert A.scalar_map(B) == {
        A.x: B.x * cos(q) - B.y * sin(q),
        A.y: B.x * sin(q) + B.y * cos(q),
        A.z: B.z
    }
    assert express(B.x, A, variables=True) == A.x * cos(q) + A.y * sin(q)
    assert express(B.y, A, variables=True) == -A.x * sin(q) + A.y * cos(q)
    assert express(B.z, A, variables=True) == A.z
    assert express(B.x*B.y*B.z, A, variables=True) == \
           A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q))
    assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
           (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
           B.y*cos(q))*A.j + B.z*A.k
    assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
                            variables=True)) == \
           A.x*A.i + A.y*A.j + A.z*A.k
    assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
           (A.x*cos(q) + A.y*sin(q))*B.i + \
           (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
    assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
                            variables=True)) == \
           B.x*B.i + B.y*B.j + B.z*B.k
    N = B.orient_new_axis('N', -q, B.k)
    assert N.scalar_map(A) == \
           {N.x: A.x, N.z: A.z, N.y: A.y}
    C = A.orient_new_axis('C', q, A.i + A.j + A.k)
    mapping = A.scalar_map(C)
    assert mapping[A.x] == 2*C.x*cos(q)/3 + C.x/3 - \
           2*C.y*sin(q + pi/6)/3 + C.y/3 - 2*C.z*cos(q + pi/3)/3 + C.z/3
    assert mapping[A.y] == -2*C.x*cos(q + pi/3)/3 + \
           C.x/3 + 2*C.y*cos(q)/3 + C.y/3 - 2*C.z*sin(q + pi/6)/3 + C.z/3
    assert mapping[A.z] == -2*C.x*sin(q + pi/6)/3 + C.x/3 - \
           2*C.y*cos(q + pi/3)/3 + C.y/3 + 2*C.z*cos(q)/3 + C.z/3
    D = A.locate_new('D', a * A.i + b * A.j + c * A.k)
    assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
    E = A.orient_new_axis('E', a, A.k, a * A.i + b * A.j + c * A.k)
    assert A.scalar_map(E) == {
        A.z: E.z + c,
        A.x: E.x * cos(a) - E.y * sin(a) + a,
        A.y: E.x * sin(a) + E.y * cos(a) + b
    }
    assert E.scalar_map(A) == {
        E.x: (A.x - a) * cos(a) + (A.y - b) * sin(a),
        E.y: (-A.x + a) * sin(a) + (A.y - b) * cos(a),
        E.z: A.z - c
    }
    F = A.locate_new('F', Vector.zero)
    assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
Esempio n. 24
0
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.vector.scalar import BaseScalar
from sympy import Symbol, sin, cos, pi, ImmutableMatrix as Matrix, \
     symbols, simplify, sqrt, zeros
from sympy.vector.functions import express
from sympy.vector.point import Point
from sympy.vector.vector import Vector
from sympy.vector.orienters import (AxisOrienter, BodyOrienter, SpaceOrienter,
                                    QuaternionOrienter)

A = CoordSysCartesian('A')
a, b, c, q = symbols('a b c q')
q1, q2, q3, q4 = symbols('q1 q2 q3 q4')


def test_coordsyscartesian_equivalence():
    A1 = CoordSysCartesian('A')
    assert A1 == A
    B = CoordSysCartesian('B')
    assert A != B
    assert A.locate_new('C1', A.i) == A.locate_new('C2', A.i)
    assert A.orient_new_axis('C1', a, A.i) == \
           A.orient_new_axis('C2', a, A.i)


def test_orienters():
    axis_orienter = AxisOrienter(a, A.k)
    body_orienter = BodyOrienter(a, b, c, '123')
    space_orienter = SpaceOrienter(a, b, c, '123')
    q_orienter = QuaternionOrienter(q1, q2, q3, q4)
    assert axis_orienter.rotation_matrix(A) == Matrix([[cos(a),
Esempio n. 25
0
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy import sin, cos

C = CoordSysCartesian('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = C.delop
a, b, c = symbols('a b c')


def test_del_operator():

    #Tests for curl
    assert delop ^ Vector.zero == Vector.zero
    assert delop.cross(Vector.zero) == Vector.zero
    assert delop ^ i == Vector.zero
    assert delop.cross(2 * y**2 * j) == Vector.zero
    v = x * y * z * (i + j + k)
    assert delop ^ v == \
           (-x*y + x*z)*i + (x*y - y*z)*j + (-x*z + y*z)*k
    assert delop ^ v == delop.cross(v)
    assert delop.cross(2 * x**2 * j) == 4 * x * k

    #Tests for divergence
    assert delop & Vector.zero == S(0)
    assert delop.dot(Vector.zero) == S(0)
    assert delop & i == S(0)
Esempio n. 26
0
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.vector.functions import express, matrix_to_vector, orthogonalize
from sympy import symbols, S, sqrt, sin, cos, ImmutableMatrix as Matrix
from sympy.utilities.pytest import raises

N = CoordSysCartesian('N')
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
A = N.orient_new_axis('A', q1, N.k)
B = A.orient_new_axis('B', q2, A.i)
C = B.orient_new_axis('C', q3, B.j)


def test_express():
    assert express(Vector.zero, N) == Vector.zero
    assert express(S(0), N) == S(0)
    assert express(A.i, C) == cos(q3)*C.i + sin(q3)*C.k
    assert express(A.j, C) == sin(q2)*sin(q3)*C.i + cos(q2)*C.j - \
        sin(q2)*cos(q3)*C.k
    assert express(A.k, C) == -sin(q3)*cos(q2)*C.i + sin(q2)*C.j + \
        cos(q2)*cos(q3)*C.k
    assert express(A.i, N) == cos(q1)*N.i + sin(q1)*N.j
    assert express(A.j, N) == -sin(q1)*N.i + cos(q1)*N.j
    assert express(A.k, N) == N.k
    assert express(A.i, A) == A.i
    assert express(A.j, A) == A.j
    assert express(A.k, A) == A.k
    assert express(A.i, B) == B.i
    assert express(A.j, B) == cos(q2)*B.j - sin(q2)*B.k
    assert express(A.k, B) == sin(q2)*B.j + cos(q2)*B.k
    assert express(A.i, C) == cos(q3)*C.i + sin(q3)*C.k
Esempio n. 27
0
def test_coordinate_vars():
    """
    Tests the coordinate variables functionality with respect to
    reorientation of coordinate systems.
    """
    A = CoordSysCartesian('A')
    # Note that the name given on the lhs is different from A.x._name
    assert BaseScalar('A.x', 0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x
    assert BaseScalar('A.y', 1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y
    assert BaseScalar('A.z', 2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z
    assert BaseScalar('A.x', 0, A, 'A_x', r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__()
    assert isinstance(A.x, BaseScalar) and \
           isinstance(A.y, BaseScalar) and \
           isinstance(A.z, BaseScalar)
    assert A.x*A.y == A.y*A.x
    assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
    assert A.x.system == A
    assert A.x.diff(A.x) == 1
    B = A.orient_new_axis('B', q, A.k)
    assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q),
                                 B.x: A.x*cos(q) + A.y*sin(q)}
    assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q),
                                 A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
    assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q)
    assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q)
    assert express(B.z, A, variables=True) == A.z
    assert expand(express(B.x*B.y*B.z, A, variables=True)) == \
           expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q)))
    assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
           (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
           B.y*cos(q))*A.j + B.z*A.k
    assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
                            variables=True)) == \
           A.x*A.i + A.y*A.j + A.z*A.k
    assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
           (A.x*cos(q) + A.y*sin(q))*B.i + \
           (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
    assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
                            variables=True)) == \
           B.x*B.i + B.y*B.j + B.z*B.k
    N = B.orient_new_axis('N', -q, B.k)
    assert N.scalar_map(A) == \
           {N.x: A.x, N.z: A.z, N.y: A.y}
    C = A.orient_new_axis('C', q, A.i + A.j + A.k)
    mapping = A.scalar_map(C)
    assert mapping[A.x] == (C.x*(2*cos(q) + 1)/3 +
                            C.y*(-2*sin(q + pi/6) + 1)/3 +
                            C.z*(-2*cos(q + pi/3) + 1)/3)
    assert mapping[A.y] == (C.x*(-2*cos(q + pi/3) + 1)/3 +
                            C.y*(2*cos(q) + 1)/3 +
                            C.z*(-2*sin(q + pi/6) + 1)/3)
    assert mapping[A.z] == (C.x*(-2*sin(q + pi/6) + 1)/3 +
                            C.y*(-2*cos(q + pi/3) + 1)/3 +
                            C.z*(2*cos(q) + 1)/3)
    D = A.locate_new('D', a*A.i + b*A.j + c*A.k)
    assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
    E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k)
    assert A.scalar_map(E) == {A.z: E.z + c,
                               A.x: E.x*cos(a) - E.y*sin(a) + a,
                               A.y: E.x*sin(a) + E.y*cos(a) + b}
    assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a),
                               E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a),
                               E.z: A.z - c}
    F = A.locate_new('F', Vector.zero)
    assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
Esempio n. 28
0
def test_coordsyscartesian_equivalence():
    A = CoordSysCartesian('A')
    A1 = CoordSysCartesian('A')
    assert A1 == A
    B = CoordSysCartesian('B')
    assert A != B
Esempio n. 29
0
def test_vector():
    """
    Tests the effects of orientation of coordinate systems on
    basic vector operations.
    """
    N = CoordSysCartesian('N')
    A = N.orient_new_axis('A', q1, N.k)
    B = A.orient_new_axis('B', q2, A.i)
    C = B.orient_new_axis('C', q3, B.j)

    #Test to_matrix
    v1 = a * N.i + b * N.j + c * N.k
    assert v1.to_matrix(A) == Matrix([[a * cos(q1) + b * sin(q1)],
                                      [-a * sin(q1) + b * cos(q1)], [c]])

    #Test dot
    assert N.i.dot(A.i) == cos(q1)
    assert N.i.dot(A.j) == -sin(q1)
    assert N.i.dot(A.k) == 0
    assert N.j.dot(A.i) == sin(q1)
    assert N.j.dot(A.j) == cos(q1)
    assert N.j.dot(A.k) == 0
    assert N.k.dot(A.i) == 0
    assert N.k.dot(A.j) == 0
    assert N.k.dot(A.k) == 1

    assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == \
           (A.i + A.j).dot(N.i)

    assert A.i.dot(C.i) == cos(q3)
    assert A.i.dot(C.j) == 0
    assert A.i.dot(C.k) == sin(q3)
    assert A.j.dot(C.i) == sin(q2) * sin(q3)
    assert A.j.dot(C.j) == cos(q2)
    assert A.j.dot(C.k) == -sin(q2) * cos(q3)
    assert A.k.dot(C.i) == -cos(q2) * sin(q3)
    assert A.k.dot(C.j) == sin(q2)
    assert A.k.dot(C.k) == cos(q2) * cos(q3)

    #Test cross
    assert N.i.cross(A.i) == sin(q1) * A.k
    assert N.i.cross(A.j) == cos(q1) * A.k
    assert N.i.cross(A.k) == -sin(q1) * A.i - cos(q1) * A.j
    assert N.j.cross(A.i) == -cos(q1) * A.k
    assert N.j.cross(A.j) == sin(q1) * A.k
    assert N.j.cross(A.k) == cos(q1) * A.i - sin(q1) * A.j
    assert N.k.cross(A.i) == A.j
    assert N.k.cross(A.j) == -A.i
    assert N.k.cross(A.k) == Vector.zero

    assert N.i.cross(A.i) == sin(q1) * A.k
    assert N.i.cross(A.j) == cos(q1) * A.k
    assert N.i.cross(A.i + A.j) == sin(q1) * A.k + cos(q1) * A.k
    assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1)) * N.k

    assert A.i.cross(C.i) == sin(q3) * C.j
    assert A.i.cross(C.j) == -sin(q3) * C.i + cos(q3) * C.k
    assert A.i.cross(C.k) == -cos(q3) * C.j
    assert C.i.cross(A.i) == (-sin(q3)*cos(q2))*A.j + \
           (-sin(q2)*sin(q3))*A.k
    assert C.j.cross(A.i) == (sin(q2)) * A.j + (-cos(q2)) * A.k
    assert express(C.k.cross(A.i), C).trigsimp() == cos(q3) * C.j
Esempio n. 30
0
def test_coordsys3d():
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        assert CoordSysCartesian("C") == CoordSys3D("C")
Esempio n. 31
0
def test_coordinate_vars():
    """
    Tests the coordinate variables functionality with respect to
    reorientation of coordinate systems.
    """
    A = CoordSysCartesian('A')
    # Note that the name given on the lhs is different from A.x._name
    assert BaseScalar('A.x', 0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x
    assert BaseScalar('A.y', 1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y
    assert BaseScalar('A.z', 2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z
    assert BaseScalar('A.x', 0, A, 'A_x',
                      r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__()
    assert isinstance(A.x, BaseScalar) and \
           isinstance(A.y, BaseScalar) and \
           isinstance(A.z, BaseScalar)
    assert A.x * A.y == A.y * A.x
    assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
    assert A.x.system == A
    assert A.x.diff(A.x) == 1
    B = A.orient_new_axis('B', q, A.k)
    assert B.scalar_map(A) == {
        B.z: A.z,
        B.y: -A.x * sin(q) + A.y * cos(q),
        B.x: A.x * cos(q) + A.y * sin(q)
    }
    assert A.scalar_map(B) == {
        A.x: B.x * cos(q) - B.y * sin(q),
        A.y: B.x * sin(q) + B.y * cos(q),
        A.z: B.z
    }
    assert express(B.x, A, variables=True) == A.x * cos(q) + A.y * sin(q)
    assert express(B.y, A, variables=True) == -A.x * sin(q) + A.y * cos(q)
    assert express(B.z, A, variables=True) == A.z
    assert expand(express(B.x*B.y*B.z, A, variables=True)) == \
           expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q)))
    assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
           (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
           B.y*cos(q))*A.j + B.z*A.k
    assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
                            variables=True)) == \
           A.x*A.i + A.y*A.j + A.z*A.k
    assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
           (A.x*cos(q) + A.y*sin(q))*B.i + \
           (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
    assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
                            variables=True)) == \
           B.x*B.i + B.y*B.j + B.z*B.k
    N = B.orient_new_axis('N', -q, B.k)
    assert N.scalar_map(A) == \
           {N.x: A.x, N.z: A.z, N.y: A.y}
    C = A.orient_new_axis('C', q, A.i + A.j + A.k)
    mapping = A.scalar_map(C)
    assert mapping[A.x].equals(C.x * (2 * cos(q) + 1) / 3 + C.y *
                               (-2 * sin(q + pi / 6) + 1) / 3 + C.z *
                               (-2 * cos(q + pi / 3) + 1) / 3)
    assert mapping[A.y].equals(C.x * (-2 * cos(q + pi / 3) + 1) / 3 + C.y *
                               (2 * cos(q) + 1) / 3 + C.z *
                               (-2 * sin(q + pi / 6) + 1) / 3)
    assert mapping[A.z].equals(C.x * (-2 * sin(q + pi / 6) + 1) / 3 + C.y *
                               (-2 * cos(q + pi / 3) + 1) / 3 + C.z *
                               (2 * cos(q) + 1) / 3)
    D = A.locate_new('D', a * A.i + b * A.j + c * A.k)
    assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
    E = A.orient_new_axis('E', a, A.k, a * A.i + b * A.j + c * A.k)
    assert A.scalar_map(E) == {
        A.z: E.z + c,
        A.x: E.x * cos(a) - E.y * sin(a) + a,
        A.y: E.x * sin(a) + E.y * cos(a) + b
    }
    assert E.scalar_map(A) == {
        E.x: (A.x - a) * cos(a) + (A.y - b) * sin(a),
        E.y: (-A.x + a) * sin(a) + (A.y - b) * cos(a),
        E.z: A.z - c
    }
    F = A.locate_new('F', Vector.zero)
    assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
Esempio n. 32
0
from sympy.simplify import simplify, trigsimp
from sympy import pi, sqrt, symbols, ImmutableMatrix as Matrix, sin, cos
from sympy.vector.vector import Vector, BaseVector, VectorAdd, VectorMul, VectorZero
from sympy.vector.coordsysrect import CoordSysCartesian

C = CoordSysCartesian("C")

i, j, k = C.base_vectors()
a, b, c = symbols("a b c")


def test_vector_sympy():
    """
    Test whether the Vector framework confirms to the hashing
    and equality testing properties of SymPy.
    """
    i1 = BaseVector("i1", 0, C)
    assert i1 == i
    assert i1.__hash__() == i.__hash__()
    v1 = 3 * j
    assert v1 == j * 3
    assert v1.components == {j: 3}
    v2 = 3 * i + 4 * j + 5 * k
    v3 = 2 * i + 4 * j + i + 4 * k + k
    assert v3 == v2
    assert v3.__hash__() == v2.__hash__()


def test_vector():
    assert isinstance(i, BaseVector)
    assert i != j
Esempio n. 33
0
def test_evalf():
    A = CoordSysCartesian('A')
    v = 3 * A.i + 4 * A.j + a * A.k
    assert v.n() == v.evalf()
    assert v.evalf(subs={a: 1}) == v.subs(a, 1).evalf()
Esempio n. 34
0
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy import sin, cos

C = CoordSysCartesian('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = C.delop
a, b, c = symbols('a b c')

def test_del_operator():

    #Tests for curl
    assert delop ^ Vector.zero == Vector.zero
    assert delop.cross(Vector.zero) == Vector.zero
    assert delop ^ i == Vector.zero
    assert delop.cross(2*y**2*j) == Vector.zero
    v = x*y*z * (i + j + k)
    assert delop ^ v == \
           (-x*y + x*z)*i + (x*y - y*z)*j + (-x*z + y*z)*k
    assert delop ^ v == delop.cross(v)
    assert delop.cross(2*x**2*j) == 4*x*k

    #Tests for divergence
    assert delop & Vector.zero == S(0)
    assert delop.dot(Vector.zero) == S(0)
    assert delop & i == S(0)
    assert delop & x**2*i == 2*x
Esempio n. 35
0
from sympy.simplify import simplify, trigsimp
from sympy import pi, sqrt, symbols, ImmutableMatrix as Matrix, \
     sin, cos, Function, Integral, Derivative, diff, integrate
from sympy.vector.vector import Vector, BaseVector, VectorAdd, \
     VectorMul, VectorZero
from sympy.vector.coordsysrect import CoordSysCartesian

C = CoordSysCartesian('C')

i, j, k = C.base_vectors()
a, b, c = symbols('a b c')


def test_vector_sympy():
    """
    Test whether the Vector framework confirms to the hashing
    and equality testing properties of SymPy.
    """
    v1 = 3 * j
    assert v1 == j * 3
    assert v1.components == {j: 3}
    v2 = 3 * i + 4 * j + 5 * k
    v3 = 2 * i + 4 * j + i + 4 * k + k
    assert v3 == v2
    assert v3.__hash__() == v2.__hash__()


def test_vector():
    assert isinstance(i, BaseVector)
    assert i != j
    assert j != k
Esempio n. 36
0
def test_coordinate_vars():
    """
    Tests the coordinate variables functionality with respect to
    reorientation of coordinate systems.
    """
    A = CoordSysCartesian('A')
    assert BaseScalar('Ax', 0, A, ' ', ' ') == A.x
    assert BaseScalar('Ay', 1, A, ' ', ' ') == A.y
    assert BaseScalar('Az', 2, A, ' ', ' ') == A.z
    assert BaseScalar('Ax', 0, A, ' ', ' ').__hash__() == A.x.__hash__()
    assert isinstance(A.x, BaseScalar) and \
           isinstance(A.y, BaseScalar) and \
           isinstance(A.z, BaseScalar)
    assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
    assert A.x.system == A
    B = A.orient_new_axis('B', q, A.k)
    assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q),
                                 B.x: A.x*cos(q) + A.y*sin(q)}
    assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q),
                                 A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
    assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q)
    assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q)
    assert express(B.z, A, variables=True) == A.z
    assert express(B.x*B.y*B.z, A, variables=True) == \
           A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q))
    assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
           (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
           B.y*cos(q))*A.j + B.z*A.k
    assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
                            variables=True)) == \
           A.x*A.i + A.y*A.j + A.z*A.k
    assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
           (A.x*cos(q) + A.y*sin(q))*B.i + \
           (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
    assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
                            variables=True)) == \
           B.x*B.i + B.y*B.j + B.z*B.k
    N = B.orient_new_axis('N', -q, B.k)
    assert N.scalar_map(A) == \
           {N.x: A.x, N.z: A.z, N.y: A.y}
    C = A.orient_new_axis('C', q, A.i + A.j + A.k)
    mapping = A.scalar_map(C)
    assert mapping[A.x] == 2*C.x*cos(q)/3 + C.x/3 - \
           2*C.y*sin(q + pi/6)/3 + C.y/3 - 2*C.z*cos(q + pi/3)/3 + C.z/3
    assert mapping[A.y] == -2*C.x*cos(q + pi/3)/3 + \
           C.x/3 + 2*C.y*cos(q)/3 + C.y/3 - 2*C.z*sin(q + pi/6)/3 + C.z/3
    assert mapping[A.z] == -2*C.x*sin(q + pi/6)/3 + C.x/3 - \
           2*C.y*cos(q + pi/3)/3 + C.y/3 + 2*C.z*cos(q)/3 + C.z/3
    D = A.locate_new('D', a*A.i + b*A.j + c*A.k)
    assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
    E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k)
    assert A.scalar_map(E) == {A.z: E.z + c,
                               A.x: E.x*cos(a) - E.y*sin(a) + a,
                               A.y: E.x*sin(a) + E.y*cos(a) + b}
    assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a),
                               E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a),
                               E.z: A.z - c}
    F = A.locate_new('F', Vector.zero)
    assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
Esempio n. 37
0
from sympy.core.function import Derivative
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSysCartesian
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy import sin, cos
from sympy.vector.functions import (curl, divergence, gradient,
                                    is_conservative, is_solenoidal,
                                    scalar_potential,
                                    scalar_potential_difference)
from sympy.utilities.pytest import raises

C = CoordSysCartesian('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = C.delop
a, b, c, q = symbols('a b c q')

def test_del_operator():

    #Tests for curl
    assert (delop ^ Vector.zero ==
            (Derivative(0, C.y) - Derivative(0, C.z))*C.i +
            (-Derivative(0, C.x) + Derivative(0, C.z))*C.j +
            (Derivative(0, C.x) - Derivative(0, C.y))*C.k)
    assert ((delop ^ Vector.zero).doit() == Vector.zero ==
            curl(Vector.zero, C))
    assert delop.cross(Vector.zero) == delop ^ Vector.zero
    assert (delop ^ i).doit() == Vector.zero
    assert delop.cross(2*y**2*j, doit = True) == Vector.zero
Esempio n. 38
0
def test_rotation_matrix():
    N = CoordSysCartesian("N")
    A = N.orient_new_axis("A", q1, N.k)
    B = A.orient_new_axis("B", q2, A.i)
    C = B.orient_new_axis("C", q3, B.j)
    D = N.orient_new_axis("D", q4, N.j)
    E = N.orient_new_space("E", q1, q2, q3, "123")
    F = N.orient_new_quaternion("F", q1, q2, q3, q4)
    G = N.orient_new_body("G", q1, q2, q3, "123")
    assert N.rotation_matrix(C) == Matrix(
        [
            [
                -sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
                -sin(q1) * cos(q2),
                sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1),
            ],
            [
                sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
                sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
            ],
            [-sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)],
        ]
    )
    test_mat = D.rotation_matrix(C) - Matrix(
        [
            [
                cos(q1) * cos(q3) * cos(q4) - sin(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
                -sin(q2) * sin(q4) - sin(q1) * cos(q2) * cos(q4),
                sin(q3) * cos(q1) * cos(q4) + cos(q3) * (-sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)),
            ],
            [
                sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
                sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
            ],
            [
                sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
                sin(q2) * cos(q4) - sin(q1) * sin(q4) * cos(q2),
                sin(q3) * sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + sin(q1) * sin(q2) * sin(q4)),
            ],
        ]
    )
    assert test_mat.expand() == zeros(3, 3)
    assert E.rotation_matrix(N) == Matrix(
        [
            [cos(q2) * cos(q3), sin(q3) * cos(q2), -sin(q2)],
            [
                sin(q1) * sin(q2) * cos(q3) - sin(q3) * cos(q1),
                sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
                sin(q1) * cos(q2),
            ],
            [
                sin(q1) * sin(q3) + sin(q2) * cos(q1) * cos(q3),
                -sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
                cos(q1) * cos(q2),
            ],
        ]
    )
    assert F.rotation_matrix(N) == Matrix(
        [
            [q1 ** 2 + q2 ** 2 - q3 ** 2 - q4 ** 2, 2 * q1 * q4 + 2 * q2 * q3, -2 * q1 * q3 + 2 * q2 * q4],
            [-2 * q1 * q4 + 2 * q2 * q3, q1 ** 2 - q2 ** 2 + q3 ** 2 - q4 ** 2, 2 * q1 * q2 + 2 * q3 * q4],
            [2 * q1 * q3 + 2 * q2 * q4, -2 * q1 * q2 + 2 * q3 * q4, q1 ** 2 - q2 ** 2 - q3 ** 2 + q4 ** 2],
        ]
    )
    assert G.rotation_matrix(N) == Matrix(
        [
            [
                cos(q2) * cos(q3),
                sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1),
                sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3),
            ],
            [
                -sin(q3) * cos(q2),
                -sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3),
                sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1),
            ],
            [sin(q2), -sin(q1) * cos(q2), cos(q1) * cos(q2)],
        ]
    )
Esempio n. 39
0
def test_coordsys3d():
    with warns_deprecated_sympy():
        assert CoordSysCartesian("C") == CoordSys3D("C")
Esempio n. 40
0
def test_lame_coefficients():
    a = CoordSysCartesian('a')
    a._set_lame_coefficient_mapping('spherical')
    assert a.lame_coefficients() == (1, a.x, sin(a.y) * a.x)
    a = CoordSysCartesian('a')
    assert a.lame_coefficients() == (1, 1, 1)
    a = CoordSysCartesian('a')
    a._set_lame_coefficient_mapping('cartesian')
    assert a.lame_coefficients() == (1, 1, 1)
    a = CoordSysCartesian('a')
    a._set_lame_coefficient_mapping('cylindrical')
    assert a.lame_coefficients() == (1, a.y, 1)