def directional_derivative(field, direction_vector): """ Returns the directional derivative of a scalar or vector field computed along a given vector in coordinate system which parameters are expressed. Parameters ========== field : Vector or Scalar The scalar or vector field to compute the directional derivative of direction_vector : Vector The vector to calculated directional derivative along them. Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ from sympy.vector.operators import _get_coord_sys_from_expr coord_sys = _get_coord_sys_from_expr(field) if len(coord_sys) > 0: # TODO: This gets a random coordinate system in case of multiple ones: coord_sys = next(iter(coord_sys)) field = express(field, coord_sys, variables=True) i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() out = Vector.dot(direction_vector, i) * diff(field, x) out += Vector.dot(direction_vector, j) * diff(field, y) out += Vector.dot(direction_vector, k) * diff(field, z) if out == 0 and isinstance(field, Vector): out = Vector.zero return out elif isinstance(field, Vector): return Vector.zero else: return S.Zero
def directional_derivative(field, direction_vector): """ Returns the directional derivative of a scalar or vector field computed along a given vector in coordinate system which parameters are expressed. Parameters ========== field : Vector or Scalar The scalar or vector field to compute the directional derivative of direction_vector : Vector The vector to calculated directional derivative along them. Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ from sympy.vector.operators import _get_coord_sys_from_expr coord_sys = _get_coord_sys_from_expr(field) if len(coord_sys) > 0: # TODO: This gets a random coordinate system in case of multiple ones: coord_sys = next(iter(coord_sys)) field = express(field, coord_sys, variables=True) i, j, k = coord_sys.base_vectors() x, y, z = coord_sys.base_scalars() out = Vector.dot(direction_vector, i) * diff(field, x) out += Vector.dot(direction_vector, j) * diff(field, y) out += Vector.dot(direction_vector, k) * diff(field, z) if out == 0 and isinstance(field, Vector): out = Vector.zero return out elif isinstance(field, Vector): return Vector.zero else: return S(0)
def directional_derivative(field, direction_vector): """ Returns the directional derivative of a scalar or vector field computed along a given vector in coordinate system which parameters are expressed. Parameters ========== field : Vector or Scalar The scalar or vector field to compute the directional derivative of direction_vector : Vector The vector to calculated directional derivative along them. Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ from sympy.vector.operators import _get_coord_sys_from_expr coord_sys = _get_coord_sys_from_expr(field) if coord_sys is not None: field = express(field, coord_sys, variables=True) out = Vector.dot(direction_vector, coord_sys._i) * diff( field, coord_sys._x) out += Vector.dot(direction_vector, coord_sys._j) * diff( field, coord_sys._y) out += Vector.dot(direction_vector, coord_sys._k) * diff( field, coord_sys._z) if out == 0 and isinstance(field, Vector): out = Vector.zero return out elif isinstance(field, Vector): return Vector.zero else: return S(0)
def directional_derivative(field, direction_vector): """ Returns the directional derivative of a scalar or vector field computed along a given vector in coordinate system which parameters are expressed. Parameters ========== field : Vector or Scalar The scalar or vector field to compute the directional derivative of direction_vector : Vector The vector to calculated directional derivative along them. Examples ======== >>> from sympy.vector import CoordSys3D, directional_derivative >>> R = CoordSys3D('R') >>> f1 = R.x*R.y*R.z >>> v1 = 3*R.i + 4*R.j + R.k >>> directional_derivative(f1, v1) R.x*R.y + 4*R.x*R.z + 3*R.y*R.z >>> f2 = 5*R.x**2*R.z >>> directional_derivative(f2, v1) 5*R.x**2 + 30*R.x*R.z """ from sympy.vector.operators import _get_coord_sys_from_expr coord_sys = _get_coord_sys_from_expr(field) if coord_sys is not None: field = express(field, coord_sys, variables=True) out = Vector.dot(direction_vector, coord_sys._i) * diff(field, coord_sys._x) out += Vector.dot(direction_vector, coord_sys._j) * diff(field, coord_sys._y) out += Vector.dot(direction_vector, coord_sys._k) * diff(field, coord_sys._z) if out == 0 and isinstance(field, Vector): out = Vector.zero return out elif isinstance(field, Vector): return Vector.zero else: return S(0)