def __new__(cls, nu, symbol=None): nu = sympify(nu) x = symbol or SingleContinuousPSpace.create_symbol() pdf = 1 / (sqrt(nu) * beta_fn(S(1) / 2, nu / 2)) * (1 + x**2 / nu)**( -(nu + 1) / 2) obj = SingleContinuousPSpace.__new__(cls, x, pdf) return obj
def __new__(cls, name, nu): nu = sympify(nu) x = Symbol(name) pdf = 1 / (sqrt(nu) * beta_fn(S(1) / 2, nu / 2)) * (1 + x**2 / nu)**( -(nu + 1) / 2) obj = SingleContinuousPSpace.__new__(cls, x, pdf) return obj
def __new__(cls, alpha, beta, symbol=None): alpha, beta = sympify(alpha), sympify(beta) _value_check(alpha > 0, "Alpha must be positive") _value_check(beta > 0, "Beta must be positive") x = symbol or SingleContinuousPSpace.create_symbol() pdf = x**(alpha-1) * (1-x)**(beta-1) / beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, 1)) obj.alpha = alpha obj.beta = beta return obj
def __new__(cls, alpha, beta, symbol=None): alpha, beta = sympify(alpha), sympify(beta) _value_check(alpha > 0, "Alpha must be positive") _value_check(beta > 0, "Beta must be positive") x = symbol or SingleContinuousPSpace.create_symbol() pdf = x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, 1)) obj.alpha = alpha obj.beta = beta return obj
def __new__(cls, nu, symbol = None): nu = sympify(nu) x = symbol or SingleContinuousPSpace.create_symbol() pdf = 1/(sqrt(nu)*beta_fn(S(1)/2,nu/2))*(1+x**2/nu)**(-(nu+1)/2) obj = SingleContinuousPSpace.__new__(cls, x, pdf) return obj
def dict(self): n, a, b = self.n, self.alpha, self.beta n = as_int(n) return dict( (k, binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b)) for k in range(0, n + 1))
def __new__(cls, name, alpha, beta): alpha, beta = sympify(alpha), sympify(beta) x = Symbol(name) pdf = x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo)) return obj
def __new__(cls, name, nu): nu = sympify(nu) x = Symbol(name) pdf = 1/(sqrt(nu)*beta_fn(S(1)/2, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2) obj = SingleContinuousPSpace.__new__(cls, x, pdf) return obj
def __new__(cls, alpha, beta, symbol=None): alpha, beta = sympify(alpha), sympify(beta) x = symbol or SingleContinuousPSpace.create_symbol() pdf = x**(alpha - 1) * (1 + x)**(-alpha - beta) / beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set=Interval(0, oo)) return obj
def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1) * (1 - x)**(beta - 1) / beta_fn(alpha, beta)
def __new__(cls, name, alpha, beta): alpha, beta = sympify(alpha), sympify(beta) x = Symbol(name) pdf = x**(alpha-1)*(1+x)**(-alpha-beta)/beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo)) return obj
def pdf(self, x): d1, d2 = self.d1, self.d2 return (2*d1**(d1/2)*d2**(d2/2) / beta_fn(d1/2, d2/2) * exp(d1*x) / (d1*exp(2*x)+d2)**((d1+d2)/2))
def pdf(self, x): d1, d2 = self.d1, self.d2 return (sqrt((d1*x)**d1*d2**d2 / (d1*x+d2)**(d1+d2)) / (x * beta_fn(d1/2, d2/2)))
def pdf(self, x): alpha, beta = self.alpha, self.beta return x**(alpha - 1)*(1 + x)**(-alpha - beta)/beta_fn(alpha, beta)
def __new__(cls, alpha, beta, symbol=None): alpha, beta = sympify(alpha), sympify(beta) x = symbol or SingleContinuousPSpace.create_symbol() pdf = x**(alpha-1)*(1+x)**(-alpha-beta)/beta_fn(alpha, beta) obj = SingleContinuousPSpace.__new__(cls, x, pdf, set = Interval(0, oo)) return obj
def pmf(self, k): n, a, b = self.n, self.alpha, self.beta return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b)
def pdf(self, x): nu = self.nu return 1/(sqrt(nu)*beta_fn(S(1)/2, nu/2))*(1 + x**2/nu)**(-(nu + 1)/2)