Esempio n. 1
0
def test_gruntz_eval_special_slow():
    sskip()
    assert gruntz(gamma(x+1)/sqrt(2*pi)
                  - exp(-x)*(x**(x+S(1)/2) + x**(x-S(1)/2)/12), x, oo) == oo
    assert gruntz(exp(exp(exp(digamma(digamma(digamma(x))))))/x, x, oo) == 0
    # XXX This sometimes fails!!!
    assert gruntz(exp(gamma(x-exp(-x))*exp(1/x)) - exp(gamma(x)), x, oo) == oo
def test_beta():
    x, y = Symbol('x'), Symbol('y')

    assert isinstance(beta(x, y), beta)

    assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y)
    assert expand_func(beta(x, y) - beta(y, x)) == 0  # Symmetric
    assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()

    assert diff(beta(x, y), x) == beta(x, y)*(digamma(x) - digamma(x + y))
    assert diff(beta(x, y), y) == beta(x, y)*(digamma(y) - digamma(x + y))
def test_beta():
    x, y = Symbol('x'), Symbol('y')

    assert isinstance(beta(x, y), beta)

    assert expand_func(beta(x, y)) == gamma(x) * gamma(y) / gamma(x + y)
    assert expand_func(beta(x, y) - beta(y, x)) == 0  # Symmetric
    assert expand_func(beta(
        x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()

    assert diff(beta(x, y), x) == beta(x, y) * (digamma(x) - digamma(x + y))
    assert diff(beta(x, y), y) == beta(x, y) * (digamma(y) - digamma(x + y))
Esempio n. 4
0
def test_gruntz_eval_special_slow():
    _sskip()
    assert (
        gruntz(
            gamma(x + 1) / sqrt(2 * pi)
            - exp(-x) * (x ** (x + S.Half) + x ** (x - S.Half) / 12),
            x,
            oo,
        )
        is oo
    )
    assert gruntz(exp(exp(exp(digamma(digamma(digamma(x)))))) / x, x, oo) == 0
Esempio n. 5
0
def test_beta():
    x, y = Symbol('x'), Symbol('y')

    assert isinstance(beta(x, y), beta)

    assert expand_func(beta(x, y)) == gamma(x) * gamma(y) / gamma(x + y)
    assert expand_func(beta(x, y) - beta(y, x)) == 0  # Symmetric
    assert expand_func(beta(
        x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()

    assert diff(beta(x, y), x) == beta(x, y) * (digamma(x) - digamma(x + y))
    assert diff(beta(x, y), y) == beta(x, y) * (digamma(y) - digamma(x + y))

    assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y))

    raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3))
Esempio n. 6
0
def gamma_at_2_coefficient(k):
    """Reference: https://dlmf.nist.gov/5.7#E3"""
    if k == 0:
        return S(0)
    elif k == 1:
        return S(1 + digamma(1))
    else:
        return ((-1)**k * (zeta(k) - 1) / k)
Esempio n. 7
0
def get_reciprocal_factorial_minus_1_coefficients(count):
    """Reference: https://dlmf.nist.gov/5.7#E1"""
    #x = symbols('x')
    #return list(reversed(Poly((1 / gamma(x + 1) - 1).series(x, 0, count).removeO(), x).all_coeffs()))
    print(f"get_reciprocal_factorial_minus_1_coefficients({count})")
    c = [1]
    zetas = [(-digamma(1) if i==0 else (-1)**i*zeta(i+1)).evalf(default_evalf_inner_precision) for i in range(0,count)]
    for k in range(1,count):
        c.append(sum([c[i]*zetas[k-i-1] for i in range(0,k)])/k)
    return [S(0 if k==0 else c[k]) for k in range(0,count)]
Esempio n. 8
0
def test_lowergamma():
    from sympy import meijerg, exp_polar, I, expint

    assert lowergamma(x, 0) == 0
    assert lowergamma(x, y).diff(y) == y ** (x - 1) * exp(-y)
    assert td(lowergamma(randcplx(), y), y)
    assert td(lowergamma(x, randcplx()), x)
    assert lowergamma(x, y).diff(x) == gamma(x) * digamma(x) - uppergamma(x, y) * log(
        y
    ) - meijerg([], [1, 1], [0, 0, x], [], y)

    assert lowergamma(S.Half, x) == sqrt(pi) * erf(sqrt(x))
    assert not lowergamma(S.Half - 3, x).has(lowergamma)
    assert not lowergamma(S.Half + 3, x).has(lowergamma)
    assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
    assert tn(lowergamma(S.Half + 3, x, evaluate=False), lowergamma(S.Half + 3, x), x)
    assert tn(lowergamma(S.Half - 3, x, evaluate=False), lowergamma(S.Half - 3, x), x)

    assert tn_branch(-3, lowergamma)
    assert tn_branch(-4, lowergamma)
    assert tn_branch(Rational(1, 3), lowergamma)
    assert tn_branch(pi, lowergamma)
    assert lowergamma(3, exp_polar(4 * pi * I) * x) == lowergamma(3, x)
    assert lowergamma(y, exp_polar(5 * pi * I) * x) == exp(4 * I * pi * y) * lowergamma(
        y, x * exp_polar(pi * I)
    )
    assert (
        lowergamma(-2, exp_polar(5 * pi * I) * x)
        == lowergamma(-2, x * exp_polar(I * pi)) + 2 * pi * I
    )

    assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
    assert conjugate(lowergamma(x, 0)) == 0
    assert unchanged(conjugate, lowergamma(x, -oo))

    assert lowergamma(x, y).rewrite(expint) == -(y ** x) * expint(-x + 1, y) + gamma(x)
    k = Symbol("k", integer=True)
    assert lowergamma(k, y).rewrite(expint) == -(y ** k) * expint(-k + 1, y) + gamma(k)
    k = Symbol("k", integer=True, positive=False)
    assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
    assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)

    assert lowergamma(70, 6) == factorial(
        69
    ) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(
        -6
    )
    assert (
        lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)
    ).evalf() < 1e-16
    assert (
        lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)
    ).evalf() < 1e-16
Esempio n. 9
0
def test_digamma_expand_func():
    assert digamma(x).expand(func=True) == polygamma(0, x)
    assert digamma(2 * x).expand(func=True) == polygamma(0, x) / 2 + polygamma(
        0, Rational(1, 2) + x
    ) / 2 + log(2)
    assert digamma(-1 + x).expand(func=True) == polygamma(0, x) - 1 / (x - 1)
    assert digamma(1 + x).expand(func=True) == 1 / x + polygamma(0, x)
    assert digamma(2 + x).expand(func=True) == 1 / x + 1 / (1 + x) + polygamma(0, x)
    assert digamma(3 + x).expand(func=True) == polygamma(0, x) + 1 / x + 1 / (
        1 + x
    ) + 1 / (2 + x)
    assert digamma(4 + x).expand(func=True) == polygamma(0, x) + 1 / x + 1 / (
        1 + x
    ) + 1 / (2 + x) + 1 / (3 + x)
    assert digamma(x + y).expand(func=True) == polygamma(0, x + y)
Esempio n. 10
0
def print_error_bound(name, indent, variable_name, series_length, coefficients,
                      nextc):
    is_alternating = sign(coefficients[-1]) != sign(coefficients[-2])
    if is_alternating:
        nextc = abs(nextc)
        print(
            f"{indent}// Error is at most {format_real_coefficient(nextc)}*{variable_name}**{series_length} when {variable_name} >= 0"
        )
        ulp1 = 2.220446049250313e-16
        if name == "2: Digamma at 1":
            offset = S(1e6)
        elif name == "3: Digamma at 2":
            offset = 1 + digamma(1)
        elif name == "4: Digamma asymptotic":
            offset = S(1)
        elif name == "5: Trigamma at 1":
            offset = S(1e8)
        elif name == "7: Tetragamma at 1":
            offset = S(2e12)
        elif name == "6: Trigamma asymptotic":
            offset = S(1)
        elif name == "8: Tetragamma asymptotic":
            offset = S(12**-3)
        elif name == "15: log(exp(x) - 1) / x":
            offset = S(-log(1e-3))
        else:
            offset = abs(coefficients[0])
        if offset == 0:
            offset = abs(coefficients[1])
            if offset == 0:
                offset = abs(coefficients[2])
                bound = (offset * ulp1 / 2 / nextc)**(1.0 /
                                                      (series_length - 2))
                print(
                    f"{indent}// which is at most Ulp({format_real_coefficient(offset)}*{variable_name}*{variable_name})/2 when 0 <= {variable_name} <= {format_real_coefficient(bound)}"
                )
            else:
                bound = (offset * ulp1 / 2 / nextc)**(1.0 /
                                                      (series_length - 1))
                print(
                    f"{indent}// which is at most Ulp({format_real_coefficient(offset)}*{variable_name})/2 when 0 <= {variable_name} <= {format_real_coefficient(bound)}"
                )
        else:
            bound = (offset * ulp1 / 2 / nextc)**(1.0 / series_length)
            print(
                f"{indent}// which is at most Ulp({format_real_coefficient(offset)})/2 when 0 <= {variable_name} <= {format_real_coefficient(bound)}"
            )
Esempio n. 11
0
def test_gruntz_eval_special():
    # Gruntz, p. 126
    assert gruntz(exp(x) * (sin(1 / x + exp(-x)) - sin(1 / x + exp(-x ** 2))), x, oo) == 1
    assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x ** 2), x, oo) == -2 / sqrt(pi)
    assert gruntz(exp(exp(x)) * (exp(sin(1 / x + exp(-exp(x)))) - exp(sin(1 / x))), x, oo) == 1
    assert gruntz(exp(x) * (gamma(x + exp(-x)) - gamma(x)), x, oo) == oo
    assert gruntz(exp(exp(digamma(digamma(x)))) / x, x, oo) == exp(-S(1) / 2)
    assert gruntz(exp(exp(digamma(log(x)))) / x, x, oo) == exp(-S(1) / 2)
    assert gruntz(digamma(digamma(digamma(x))), x, oo) == oo
    assert gruntz(loggamma(loggamma(x)), x, oo) == oo
    assert gruntz(((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x) - cos(1 / x)) * x * log(x), x, oo) == -S(1) / 2
    assert gruntz(x * (gamma(x - 1 / gamma(x)) - gamma(x) + log(x)), x, oo) == S(1) / 2
    assert gruntz((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x), x, oo) == 1
Esempio n. 12
0
def test_gruntz_eval_special():
    # Gruntz, p. 126
    assert gruntz(exp(x)*(sin(1/x + exp(-x)) - sin(1/x + exp(-x**2))), x, oo) == 1
    assert gruntz((erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2),
                  x, oo) == -2/sqrt(pi)
    assert gruntz(exp(exp(x)) * (exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x))),
                  x, oo) == 1
    assert gruntz(exp(x)*(gamma(x + exp(-x)) - gamma(x)), x, oo) == oo
    assert gruntz(exp(exp(digamma(digamma(x))))/x, x, oo) == exp(-S(1)/2)
    assert gruntz(exp(exp(digamma(log(x))))/x, x, oo) == exp(-S(1)/2)
    assert gruntz(digamma(digamma(digamma(x))), x, oo) == oo
    assert gruntz(loggamma(loggamma(x)), x, oo) == oo
    assert gruntz(((gamma(x + 1/gamma(x)) - gamma(x))/log(x) - cos(1/x))
                  * x*log(x), x, oo) == -S(1)/2
    assert gruntz(x * (gamma(x - 1/gamma(x)) - gamma(x) + log(x)), x, oo) \
        == S(1)/2
    assert gruntz((gamma(x + 1/gamma(x)) - gamma(x)) / log(x), x, oo) == 1
Esempio n. 13
0
def test_gruntz_eval_special():
    # Gruntz, p. 126
    assert (
        gruntz(exp(x) * (sin(1 / x + exp(-x)) - sin(1 / x + exp(-(x ** 2)))), x, oo)
        == 1
    )
    assert gruntz(
        (erf(x - exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x ** 2), x, oo
    ) == -2 / sqrt(pi)
    assert (
        gruntz(exp(exp(x)) * (exp(sin(1 / x + exp(-exp(x)))) - exp(sin(1 / x))), x, oo)
        == 1
    )
    assert gruntz(exp(x) * (gamma(x + exp(-x)) - gamma(x)), x, oo) is oo
    assert gruntz(exp(exp(digamma(digamma(x)))) / x, x, oo) == exp(Rational(-1, 2))
    assert gruntz(exp(exp(digamma(log(x)))) / x, x, oo) == exp(Rational(-1, 2))
    assert gruntz(digamma(digamma(digamma(x))), x, oo) is oo
    assert gruntz(loggamma(loggamma(x)), x, oo) is oo
    assert gruntz(
        ((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x) - cos(1 / x)) * x * log(x), x, oo
    ) == Rational(-1, 2)
    assert gruntz(x * (gamma(x - 1 / gamma(x)) - gamma(x) + log(x)), x, oo) == S.Half
    assert gruntz((gamma(x + 1 / gamma(x)) - gamma(x)) / log(x), x, oo) == 1
Esempio n. 14
0
def test_leading_term():
    from sympy import digamma

    assert O(1 / digamma(1 / x)) == O(1 / log(x))
Esempio n. 15
0
def test_digamma():
    from sympy import I

    assert digamma(nan) == nan

    assert digamma(oo) == oo
    assert digamma(-oo) == oo
    assert digamma(I * oo) == oo
    assert digamma(-I * oo) == oo

    assert digamma(-9) == zoo

    assert digamma(-9) == zoo
    assert digamma(-1) == zoo

    assert digamma(0) == zoo

    assert digamma(1) == -EulerGamma
    assert digamma(7) == Rational(49, 20) - EulerGamma

    def t(m, n):
        x = S(m) / n
        r = digamma(x)
        if r.has(digamma):
            return False
        return abs(digamma(x.n()).n() - r.n()).n() < 1e-10

    assert t(1, 2)
    assert t(3, 2)
    assert t(-1, 2)
    assert t(1, 4)
    assert t(-3, 4)
    assert t(1, 3)
    assert t(4, 3)
    assert t(3, 4)
    assert t(2, 3)
    assert t(123, 5)

    assert digamma(x).rewrite(zeta) == polygamma(0, x)

    assert digamma(x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma

    assert digamma(I).is_real is None

    assert digamma(x, evaluate=False).fdiff() == polygamma(1, x)

    assert digamma(x, evaluate=False).is_real is None

    assert digamma(x, evaluate=False).is_positive is None

    assert digamma(x, evaluate=False).is_negative is None

    assert digamma(x, evaluate=False).rewrite(polygamma) == polygamma(0, x)
Esempio n. 16
0
def digamma_at_1_coefficient(k):
    """Reference: https://dlmf.nist.gov/5.7#E4"""
    if k == 0:
        return digamma(1)
    return ((-1)**(k + 1) * zeta(k + 1))
Esempio n. 17
0
 def t(m, n):
     x = S(m) / n
     r = digamma(x)
     if r.has(digamma):
         return False
     return abs(digamma(x.n()).n() - r.n()).n() < 1e-10
Esempio n. 18
0
def test_gruntz_eval_special_slow():
    _sskip()
    assert gruntz(gamma(x + 1)/sqrt(2*pi)
                  - exp(-x)*(x**(x + S(1)/2) + x**(x - S(1)/2)/12), x, oo) == oo
    assert gruntz(exp(exp(exp(digamma(digamma(digamma(x))))))/x, x, oo) == 0
Esempio n. 19
0
def test_leading_term():
    from sympy import digamma
    assert O(1 / digamma(1 / x)) == O(1 / log(x))
Esempio n. 20
0
def test_issue_15146():
    e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \
        2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3)
    assert limit(e, x, oo) == S(1)/3
Esempio n. 21
0
def test_gruntz_eval_special_slow():
    _sskip()
    assert gruntz(gamma(x + 1)/sqrt(2*pi)
                  - exp(-x)*(x**(x + S(1)/2) + x**(x - S(1)/2)/12), x, oo) == oo
    assert gruntz(exp(exp(exp(digamma(digamma(digamma(x))))))/x, x, oo) == 0
Esempio n. 22
0
def digamma_at_1_coefficient(k):
    if k == 0:
        return digamma(1).evalf(decimal_precision, maxn=evalf_inner_precision)
    return ((-1)**(k + 1) * zeta(k + 1)).evalf(decimal_precision, maxn=evalf_inner_precision)