Esempio n. 1
0
def relation(interval_or_relation, var=x):
    """Return LaTeX that represents an interval or a relation as a chained inequality.

    e.g. [1, 5] --> 1 < x < 5
    """
    if isinstance(interval_or_relation, (sympy.StrictLessThan, sympy.LessThan, sympy.StrictGreaterThan, sympy.GreaterThan)):
        interval = functions.relation_to_interval(interval_or_relation)
    else:
        interval = interval_or_relation

    if isinstance(interval_or_relation, sympy.Union):
        raise NotImplementedError('unions are not yet supported')

    if interval.left == -sympy.oo and interval.right == sympy.oo:
        return r'{0} < {1} < {2}'.format(sympy.latex(-sympy.oo), sympy.latex(var), sympy.latex(sympy.oo))
    elif interval.left == -sympy.oo:
        operator = r'<' if interval.right_open else r'\le'
        return r'{0} {1} {2}'.format(sympy.latex(var), operator, sympy.latex(interval.right))
    elif interval.right == sympy.oo:
        operator = r'>' if interval.left_open else r'\ge'
        return r'{0} {1} {2}'.format(sympy.latex(var), operator, sympy.latex(interval.left))
    else:
        left_operator = r'<' if interval.left_open else r'\le'
        right_operator = r'<' if interval.right_open else r'\le'
        return r'{0} {1} {2} {3} {4}'.format(
            sympy.latex(interval.left),
            left_operator,
            sympy.latex(var),
            right_operator,
            sympy.latex(interval.right)
        )
def print_latex():

    # edo_main()
    for i in range(1, 7):
        Respostas[i] = sympy.nsimplify(Respostas[i], rational=True, tolerance=0.05).evalf(prec)

    # 0- Raizes; 1- Forma Natural da respsota; 2- Resposta Natural;
    # 3- Resposta Particular; 4- Resposta Transitoria; 5- Respsota Forcada
    # 6- Resposta Completa; 7-Sinal de entrada x(t); 8 - eq
    ###
    eqDiferencialEntradaLatex = latex(Respostas[8])

    ##Perfumaria
    dif = 0.9 - 0.77
    xdif = -0.15
    font = {"family": "Sans", "weight": "normal", "size": 18}

    plt.rc("font", **font)

    ##Obtendo as respostas em Latex
    RespostasEmLatex = [0] * (len(Respostas))
    raizEmLatex = [0] * (len(Respostas[0]))
    str_raizLatex = ""
    for i in range(len(Respostas[0])):
        raizEmLatex[i] = "$" + str(latex(Respostas[0][i])) + "$"
    for i in range(len(raizEmLatex)):
        rn = "r" + str(i + 1) + " = "
        rn = "$" + str(latex(rn)) + "$"
        str_raizLatex = str_raizLatex + "\t" + rn + raizEmLatex[i]
    ##print len(RespostasEmLatex)
    for i in range(len(Respostas)):
        RespostasEmLatex[i] = "$" + str(latex(Respostas[i])) + "$"
    # print RespostasEmLatex
    # xTLatex = '$' + latex(xT) +'$'
    ###Preparando para imprimir
    log_figure = plt.figure("Representacao", facecolor="white")
    ax1 = plt.axes(frameon=False)
    ax1.get_xaxis().tick_bottom()
    ax1.get_xaxis().set_visible(False)
    ax1.axes.get_yaxis().set_visible(False)
    for i in range(0, 8, 1):
        plt.axhline(0.86 - dif * i, xmin=-5, xmax=5, color="black", lw=0.2, linestyle=":")
    # log_figure.figure("Forma_Representativa:")
    plt.title("")
    plt.text(xdif, 0.89, "Eq dif: 0=" + ur"$" + eqDiferencialEntradaLatex + "$")
    plt.text(xdif, 0.89 - dif, "Forma Natural:" + ur"" + RespostasEmLatex[1])
    plt.text(xdif, 0.9 - 2 * dif, "yn(t) = " + ur"" + RespostasEmLatex[2])
    plt.text(xdif, 0.9 - 3 * dif, "ypar(t) = " + ur"" + RespostasEmLatex[3])
    plt.text(xdif, 0.9 - 4 * dif, "ytran(t) = " + ur"" + RespostasEmLatex[4])
    plt.text(xdif, 0.9 - 5 * dif, "yfor(t) = " + ur"" + RespostasEmLatex[5])
    plt.text(xdif, 0.9 - 6 * dif, "yc(t) = " + ur"" + RespostasEmLatex[6])
    plt.text(xdif, 0.9 - 7 * dif, "x(t) = " + ur"" + RespostasEmLatex[7])
    plt.text(xdif, 0.9 - 8 * dif, "Raiz(es): " + ur"" + str_raizLatex)

    plt.subplots_adjust(left=0.11, bottom=0.08, right=0.50, top=0.88, wspace=0.22, hspace=0.21)

    ##log_figure.set_size_inches(19.2,10.8)
    # log_figure.show()
    plt.show()
    return log_figure
Esempio n. 3
0
def formula(quantity):
    """ returns error formula of quantity as latex code

    Args:
        quantity: Quantity object

    Return:
        latex code string of error formula
    """

    assert isinstance(quantity, Quantity)

    if quantity.error_formula is None:
        raise ValueError("quantity '%s' doesn't have an error formula." % quantity.name)

    formula = quantity.error_formula
    if isinstance(formula,str):
        return formula
    else:
        # replace "_err" by sigma function
        sigma = Function("\sigma")
        for var in formula.free_symbols:
            if var.name[-4:] == "_err":
                formula = formula.subs(var, sigma( Symbol(var.name[:-4], **var._assumptions)))
        latex_code = latex(sigma(quantity)) + " = " + latex(formula)

    form_button, form_code = pytex.hide_div('Formula', '$%s$' % (latex_code) , hide = False)
    latex_button, latex_code = pytex.hide_div('LaTex', latex_code)
    res = 'Error Formula for %s<div width=20px/>%s%s<hr/>%s<br>%s' % (
        '$%s$' % latex(quantity), form_button, latex_button, form_code, latex_code)

    return render_latex(res)
Esempio n. 4
0
def baseparms_pretty_latex(delta,Pb,Pd,Kd):
    base_latex = []
    delta_b = Pb.T * delta
    delta_d = Pd.T * delta
    n_b = len(delta_b)
    n_d = len(delta_d)
    for i in range(n_b):
        _latex = latex( delta_b[i] )
        l = []
        for j in range(n_d):
            c = Kd[i,j]
            if c == -1 or c == 1:
                _latex += ' ' + ('+ ' if c > 0 else'') + latex( c * delta_d[j] )
            elif c != 0 and j not in l:
                ll = []
                for jj in range(j,n_d):
                    cc = Kd[i,jj]
                    if cc == c:
                        l.append(jj)
                        ll.append(delta_d[jj])
                p = (' \, ( ',' ) ') if (len(ll) > 1) else (' \, ','')
                ll_sum = ' + '.join( [ latex( lli ) for lli in ll] )
                _latex += ' ' + ('+ ' if c > 0 else'') + latex( c.n() ) + p[0] + ll_sum + p[1]
        base_latex.append(_latex)
    return base_latex;
Esempio n. 5
0
    def formula(self, quantity, adjust=True):
        """ returns error formula of quantity as latex code

        Args:
            quantity: name of quantity or Quantity object
            adjust: if True, replaces "_err" suffix by "\sigma" function and adds equals sign in front

        Return:
            latex code string of error formula
        """

        quantity = quantities.parse_expr(quantity, self.data)
        assert isinstance(quantity, quantities.Quantity)

        if quantity.error_formula is None:
            raise ValueError("quantity '%s' doesn't have an error formula.")

        formula = quantity.error_formula
        if isinstance(formula,str):
            return formula
        else:
            # replace "_err" by sigma function
            if adjust:
                sigma = Function("\sigma")
                for var in formula.free_symbols:
                    if var.name[-4:] == "_err":
                        formula = formula.subs(var, sigma( Symbol(var.name[:-4], **var._assumptions)))
                return latex(sigma(quantity)) + " = " + latex(formula)
            return formula
Esempio n. 6
0
def table_groesse(expr,variables,container,name,formula=False,einheit="default"):
        (X,expr,Sexpr)=eval_expr(expr,variables,container,name)
	if einheit!="default":
		X.convert_einheit(einheit)	
        x=ur"\bigskip"
        if formula==True:
                x+=ur"\begin{equation*} "+name+" = "+sy.latex(expr)+"\end{equation*}"
                x+=ur"\begin{equation*} S"+name+" = "+sy.latex(Sexpr)+"\end{equation*}"
        s=ur""
        s2=ur""
        if X.x.dimensionality.string != "dimensionless":
                x+=ur"S"+name+" = "+sy.latex(Sexpr)+ur"\\"
        s=ur""
        s2=ur""
        if X.x.dimensionality.string != "dimensionless":
                s+=name+" in "+str(X.x.dimensionality.string)
        else: 
                s+=name
        for k in X.x.magnitude:
                s+="& %.3f " % k
                s2+="r|"
        s+=ur"\\ \hline "
        if X.Sx.dimensionality.string!= "dimensionless":
                s+="S"+name+" in "+str(X.Sx.dimensionality.string)
        else:
                s+="S"+name
        for k in X.Sx.magnitude:
                s+="& %.3f " % k
        s+=ur"\\ \hline"       
        x+=ur"""\normalsize \vspace{3 mm}
	\begin{tabular}{| l | """+s2+"""}
	\hline
        """+s+ur"""
	\end{tabular} \\ \bigskip """
	return x
Esempio n. 7
0
 def arc_length_explain(self, start, stop, a_type = None,
                        explanation_type=None, preview = None):
     
     
     if a_type is None:
         a_type = self.a_type
         
     v = self.v_
     u = self.u
     
     start = sym.sympify(start)
     stop = sym.sympify(stop)
     
    
     if explanation_type is None:
         explanation_type = self.kwargs.get('explanation_type', 'simple')
     
     if preview is None:
         preview = self.kwargs.get('preview', False)  
    
     
     explanation = ArcLengthProb(path='arc_length/explanation', 
                 a_type = a_type, 
                 explanation_type = explanation_type,
                 preview = preview).explain()
                 
     explanation += """
         <p>
         For this problem the curve is $_C$_ is given by $_%s$_
         with the independent variable being $_%s$_ on the interval 
         $_[%s,%s]$_. So the arc length is
         $$s =\\int_{%s}^{%s} \sqrt{1+\\left(\\frac{d%s}{d%s}\\right)^2}\,d%s$$
         $$\\frac{d%s}{d%s} = %s = %s$$
         \\begin{align}
           \\sqrt{1 + \\left(%s\\right)^2} &= \\sqrt{%s} \\\\
             &= \sqrt{\\left(%s\\right)^2} = %s
         \\end{align}
         </p>
     """%tuple(map(lambda x: sym.latex(x).replace("\\log","\\ln"), 
                   [sym.Eq(v, self.v), u, start, stop, start, stop, 
                    v, u, u, v, u, 
                    self.Dv, self.dv, self.dv, 1 + (self.dv**2).expand(), 
                     self.ds, self.ds]))
     
     aa = [sym.latex(self.arc_length(start, stop,'integral')), 
           "\\left." + sym.latex(self.Ids).replace('\\log', '\\ln') +
           "\\right|_{%s=%s}^{%s=%s}"%(u, start, u, stop),
          sym.latex(self.arc_length(start, stop,'exact')).replace("\\log", "\\ln") + 
          '\\approx %.3f'%(self.arc_length(start, stop,'numeric'))]
     
     # Add self.numeric / self.anti 
     
     explanation += """
         <p>
         Thus the arclength is given by
         %s
         </p>
     """%(tools.align(*aa))
     #
     return explanation
Esempio n. 8
0
def simplex_table_to_tex_table_only(table):
    ret = """\\begin{tabular}{|c|"""
    ret += ("c|"*(table.amount_of_vars + 1))
    ret += "} \\hline"

    ret += " & \\T \\B $ "
    for j in range(table.amount_of_vars):
        ret += "$&$"
        ret += "x_{"+"{0:<2}".format(j) +"}"
    ret += "$\\\\ \\hline "

    for i in range(table.amount_of_equations):
        ret += "$x_{" + "{0:<2}".format(table.basis[i]) + "}$"
        ret += "& \\T \\B $ "
        ret += latex(table.free[i])
        for j in range(table.amount_of_vars):
            ret += "$&$"
            ret += latex(table.limits[i][j])
        ret += "$\\\\ \\hline "

    ret += "$\Psi$ & $"
    ret += latex(table.target_free)
    for j in range(table.amount_of_vars):
        ret += "$&\\T \\B$"
        ret += latex(table.target[j])
    ret += "$\\\\ \\hline "

    ret += """\\end{tabular}"""
    return ret
def print_latex():



        # 0- Raizes; 1- Forma Natural da respsota; 2- Resposta Natural;
        # 3- Resposta Particular; 4- Resposta Transitoria; 5- Respsota Forcada
        # 6- Resposta Completa
        # 7-Sinal de entrada x(t)

        ##Perfumaria
        dif = 0.9 -0.75
        xdif = -0.15

        font = {'family' : 'Arial',
		'weight' : 'normal',
		'size'   : 18}

        plt.rc('font', **font)
        #plt.rc('text', usetex=True)

        ##Obtendo as respostas em Latex
        RespostasEmLatex = [0]*(len(Respostas))
        #print len(RespostasEmLatex)
        for i in range(len(Respostas)):RespostasEmLatex[i] = '$'+str(latex(Respostas[i])) +'$'

        ## Tratamento Inicial para as raizes:
        #replace(a, old, new[, count])
        #r'$\left( \begin{array}{ll} 2 & 3 \\ 4 & 5 \end{array} \right)$'
        #$\begin{bmatrix}-1.5, & 1.0\end{bmatrix}$
        #\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}
        #print RespostasEmLatex[0]
        #RespostasEmLatex[0]= RespostasEmLatex[0].replace("bmatrix","Bmatrix")
        #RespostasEmLatex[0]= RespostasEmLatex[0].replace("}$","})$",1)
        #print RespostasEmLatex[0]

        ####


        #print RespostasEmLatex
        xTLatex = '$' + latex(xT) +'$'
        ###Preparando para imprimir
        log_figure = plt.figure("Representacao",facecolor='white')
        ax1 = plt.axes(frameon = False)
        ax1.get_xaxis().tick_bottom()
        ax1.get_xaxis().set_visible(False)
        ax1.axes.get_yaxis().set_visible(False)
        for i in range(0,7,1):plt.axhline(dif*i,xmin = -5,xmax = 5, color = 'black',lw =1.5, linestyle = ':')
        #log_figure.figure("Forma_Representativa:")
        plt.title('')
        #print RespostasEmLatex[0]
        #plt.text(xdif,0.05,'Raizes:'+str(Respostas[0]))
        plt.text(xdif,0.9,'Forma Natural:'+ur''+RespostasEmLatex[1])
        plt.text(xdif,0.9-dif,'yn(t) = '+ur''+RespostasEmLatex[2])
        plt.text(xdif,0.9-2*dif,'ypar(t) = '+ur''+RespostasEmLatex[3])
        plt.text(xdif,0.9-3*dif,'ytran(t) = '+ur''+RespostasEmLatex[4])
        plt.text(xdif,0.9-4*dif,'yfor(t) = '+ur''+RespostasEmLatex[5])
        plt.text(xdif,0.9-5*dif,'yc(t) = '+ur''+RespostasEmLatex[6])
        plt.text(xdif,0.9-6*dif,'x(t) = '+ur''+xTLatex)

        log_figure.show()
Esempio n. 10
0
    def visit_Call(self, node):
        buffer = []
        fname = node.func.id

        # Only apply to lowercase names (i.e. functions, not classes)
        if fname in self.__class__.EXCEPTIONS:
            node.func.id = self.__class__.EXCEPTIONS[fname].__name__
            self.latex = sympy.latex(self.evaluator.eval_node(node))
        else:
            result = self.format(fname, node)
            if result:
                self.latex = result
            elif fname[0].islower() and fname not in OTHER_SYMPY_FUNCTIONS:
                buffer.append("\\mathrm{%s}" % fname.replace('_', '\\_'))
                buffer.append('(')

                latexes = []
                for arg in node.args:
                    if isinstance(arg, ast.Call) and arg.func.id[0].lower() == arg.func.id[0]:
                        latexes.append(self.visit_Call(arg))
                    else:
                        latexes.append(sympy.latex(self.evaluator.eval_node(arg)))

                buffer.append(', '.join(latexes))
                buffer.append(')')

                self.latex = ''.join(buffer)
            else:
                self.latex = sympy.latex(self.evaluator.eval_node(node))
        return self.latex
Esempio n. 11
0
    def solution_statement(self):
        lines = solutions.Lines()

        derivative = self._qp['equation'].diff()
        lines += r'''$y = {equation}, y' = {derivative}$'''.format(
            equation=sympy.latex(self._qp['equation']),
            derivative=sympy.latex(derivative)
        )

        original_y_coordinate = self._qp['equation'].subs({x: self._qp['location']})
        lines += r'$y({original_x_coordinate}) = {original_y_coordinate}$'.format(
            original_x_coordinate=self._qp['location'],
            original_y_coordinate=original_y_coordinate
        )

        derivative_at_original_location = derivative.subs({x: self._qp['location']})
        lines += r'''$y'({original_x_coordinate}) = {derivative_at_original_location}$'''.format(
            original_x_coordinate=self._qp['location'],
            derivative_at_original_location=sympy.latex(derivative_at_original_location)
        )

        unevaluated_approximation_of_answer = noevals.noevalAdd(original_y_coordinate, noevals.noevalMul(self._qp['delta'], derivative_at_original_location))
        answer = original_y_coordinate + self._qp['delta'] * derivative_at_original_location
        lines += r'$\therefore y({new_x_coordinate}) \approx {unevaluated_approximation_of_answer} = {answer}$'.format(
            new_x_coordinate=self._qp['new_location'],
            unevaluated_approximation_of_answer=noevals.latex(unevaluated_approximation_of_answer),
            answer=sympy.latex(answer)
        )

        return lines.write()
Esempio n. 12
0
    def solution_statement(self):
        lines = solutions.Lines()

        second_derivative = self._qp['equation'].diff().diff()
        second_derivative_leibniz_form = r'{derivative}({location})'.format(
            derivative=expressions.derivative(upper_variable="x", lower_variable="y", degree=2),
            location=self._qp['location']
        )
        second_derivative_at_original_location = second_derivative.subs({x: self._qp['location']})
        lines += r'''The function is {concave_or_convex} at $x = {location}$ since the second derivative
            ${second_derivative_leibniz_form} = {second_derivative_at_original_location}$ is {greater_than_or_less_than} than $0$.'''.format(
            concave_or_convex=self._qp['concave_or_convex'],
            location=self._qp['location'],
            second_derivative_leibniz_form=second_derivative_leibniz_form,
            second_derivative_at_original_location=sympy.latex(second_derivative_at_original_location),
            greater_than_or_less_than='greater than' if second_derivative_at_original_location > 0 else 'less than'
        )

        lines += r'''Therefore, the gradient of ${equation}$ {increases_or_decreases} as $x$ moves from ${location}$ to ${new_location}$
            and as a result, linear approximation {under_or_over}estimates the true value of ${unevaluated_f_of_new_location}$'''.format(
            equation=sympy.latex(self._qp['equation']),
            increases_or_decreases='increases' if second_derivative_at_original_location > 0 else 'decreases',
            location=self._qp['location'],
            new_location=self._qp['new_location'],
            under_or_over='under' if self._qp['concave_or_convex'] else 'over',
            unevaluated_f_of_new_location=sympy.latex(self._qi['noeval_equation'].subs({x: self._qp['new_location']}))
        )

        return lines.write()
Esempio n. 13
0
    def solution_statement(self):
        lines = solutions.Lines()

        if self._qp['question_type'] == 'one_x':
            answer = self._qp['prob_table'][self._qp['x_value']] ** self._qp['n_days']
            lines += r'$Pr(X = {x_value}$, {n_days} days in a row$) = {probability_of_x}^{n_days} = {answer}.$'.format(
                x_value=self._qp['x_value'],
                n_days=self._qp['n_days'],
                probability_of_x=sympy.latex(self._qp['prob_table'][self._qp['x_value']]),
                answer=sympy.latex(answer)
            )

        elif self._qp['question_type'] == 'any_x':
            sum_of_probabilities = ' + '.join([r'''Pr(X = {0})^{1}'''.format(k, self._qp['n_days']) for k in self._qp['prob_table']])
            lines += r'''$Pr(X$ is the same number {n_days} days in a row$) = {sum_of_probabilities}$'''.format(
                n_days=self._qp['n_days'],
                sum_of_probabilities=sum_of_probabilities
            )

            sum_of_probabilities = ' + '.join(['({0})^{1}'.format(sympy.latex(v), self._qp['n_days']) for v in self._qp['prob_table'].values()])
            answer = sum(v ** self._qp['n_days'] for v in self._qp['prob_table'].values())
            lines += r'''$= {sum_of_probabilities} = {answer}$'''.format(
                sum_of_probabilities=sum_of_probabilities,
                answer=sympy.latex(answer)
            )

        return lines.write()
Esempio n. 14
0
def prob1_25(part=1):
    cs = CartesianCS
    x, y, z = sym.symbols('x, y, z')
    A = sym.Matrix([cs.x, 2*cs.y, 3*cs.z])
    B = sym.Matrix([3 * cs.y, -2 * cs.x, 0])

    print('\\item \\curl{A} = $%s$' % my_xyzvec(cs.curl(A)))
    print('\\item \\curl{B} = $%s$' % my_xyzvec(cs.curl(B)))
    print('\\item \\diver{A} = $%s$' % sym.latex(cs.div(A)))
    print('\\item \\diver{B} = $%s$' % sym.latex(cs.div(B)))


    if part == 1:
        lhs = cs.div(A.cross(B))
        print('lhs = %s' % sym.latex(lhs))
        t1 = B.dot(cs.curl(A))
        print('B dot (curl(A): %s' %sym.latex(t1))
        t2 = A.dot(cs.curl(B))
        print('A dot (curl(B): %s' % sym.latex(t2))
        rhs = t1 - t2
        print('B dot curl(A) - A dot curl(B): %s' % sym.latex(rhs))

    if part == 2:
        lhs = cs.grad(A.dot(B))
        print('lhs = %s' % sym.latex(lhs))
        t1 = B.dot(cs.curl(A))
        print('B dot (curl(A): %s' %sym.latex(t1))
        t2 = A.dot(cs.curl(B))
        print('A dot (curl(B): %s' % sym.latex(t2))
        rhs = t1 - t2
        print('B dot curl(A) - A dot curl(B): %s' % sym.latex(rhs))
Esempio n. 15
0
    def __str__(self):
        
        s = ""
        xi = [r'\vec i', r'\vec j', r'\vec k']
        phi = r"\phi(\vec r)"
        
        for key in sorted(self.stateMap.keys()):
            s += self.beginTable()

            qNums = str(self.stateMap[key]).strip("]").strip("[")
            
            genericFactor = self.genericFactor(self.stateMap[key])            
            
            s += "$\phi_{%d} \\rightarrow \phi_{%s}$\\\\\n" % (key, qNums)
            s += "\hline\n"
            s += "$%s$ & $%s$\\\\\n" % (phi, latex(self.orbitals[key]/genericFactor))
            s += "\hline\n"
         
            for i in range(self.dim):
                s+= "$%s\cdot \\nabla %s$ & $%s$\\\\\n" % \
                        (xi[i], phi, latex(self.gradients[key][i]/genericFactor))
           
            s += "\hline\n"
            s += "$\\nabla^2 %s$ & $%s$\\\\\n" % (phi, latex(self.Laplacians[key]/genericFactor))
            s += self.endTable(caption="Orbital expressions %s : %s. Factor $%s$ is omitted." % \
                                (self.__class__.__name__, qNums, latex(genericFactor)))
            
            if (key+1)%self.figsPrPage == 0:
                s += "\\clearpage\n"
            
        return s
Esempio n. 16
0
def simplex_table_to_tex_solution_only(table):
    solution = ''
    var, target = table.solution
    for i in range(table.amount_of_vars):
        solution += "$x_{" + "{0:<2}".format(i) + "} = " + latex(var[i]) + '$\\\\'
    solution += '$\Psi = ' + latex(target) + '$'
    return solution
def print_latex():



    # 0- Raizes; 1- Forma Natural da respsota; 2- Resposta Natural;
    # 3- Resposta Particular; 4- Resposta Transitoria; 5- Respsota Forcada
    # 6- Resposta Completa
    # 7-Sinal de entrada x(t)
    dif = 0.9 -0.75
    fontSize = 18

    ##Obtendo as respostas em Latex
    RespostasEmLatex = [0]*(len(Respostas))
    print len(RespostasEmLatex)
    for i in range(len(Respostas)):RespostasEmLatex[i] = '$'+str(latex(Respostas[i])) +'$'
    #print RespostasEmLatex
    xTLatex = '$' + latex(xT) +'$'
    ###Preparando para imprimir
    log_figure = plt.figure('Latex Representation')
    plt.title('Respostas na forma representativa',fontsize = fontSize)
    plt.text(0.001,0.9,'Forma Natural:'+ur''+RespostasEmLatex[1],fontsize = fontSize)
    plt.text(0.001,0.9-dif,'yn(t) = '+ur''+RespostasEmLatex[2],fontsize = fontSize)
    plt.text(0.001,0.9-2*dif,'ypar(t) = '+ur''+RespostasEmLatex[3],fontsize = fontSize)
    plt.text(0.001,0.9-3*dif,'ytran(t) = '+ur''+RespostasEmLatex[4],fontsize = fontSize)
    plt.text(0.001,0.9-4*dif,'yfor(t) = '+ur''+RespostasEmLatex[5],fontsize = fontSize)
    plt.text(0.001,0.9-5*dif,'yc(t) = '+ur''+RespostasEmLatex[6],fontsize = fontSize)
    plt.text(0.001,0.9-6*dif,'x(t) = '+ur''+xTLatex,fontsize = fontSize)

    log_figure.show()
Esempio n. 18
0
File: core.py Progetto: sidaw/mompy
def problem_to_str(obj, gs = None, hs = None, plain = True):
    strret = ''
    gpresent = gs is not None and len(gs)>0
    hpresent = hs is not None and len(hs)>0
    if not plain:
        strret += 'Minimizing '
        strret += '$\mathcal{L}(%s)$' % sp.latex(obj)
        if gpresent or hpresent:
            strret += ('\n\nsubject to \t')
            if gpresent:
                for g in gs:
                    strret += ' $%s$, \t' % sp.latex(g)
                strret += '\n'
            if hpresent:
                for h in hs:
                    strret += '$\mathcal{L}(%s) = 0$, \t' % sp.latex(h)
            strret = strret.strip(',')
        else:
            strret += '\t subject to no constraints'
    else:
        strret += 'Minimizing '
        strret += ' L(%s) ' % str(obj)
        if gpresent or hpresent:
            strret += ('\nsubject to \t')
            if gpresent:
                for g in gs:
                    strret += ' %s, \t' % str(g)
                strret += '\n'
            if hpresent:
                for h in hs:
                    strret += '$L(%s) = 0$, \t' % str(h)
            strret = strret.strip(',')
        else:
            strret += '\t subject to no constraints'
    return strret
Esempio n. 19
0
def do_it(j_foo, s0, _s0, s1, _s1, is_swap, is_map, zones_amount):

    s0_max, s0_min = process_maxmin(_s0)
    s1_max, s1_min = process_maxmin(_s1)

    j_foo = j_foo.replace(str(s0), 'x')
    j_foo = j_foo.replace(str(s1), 'y')
    j_foo = j_foo.replace('L', '')

    zone_pl = ''
    is_zone = False
    if zones_amount != None:
        is_zone = True
        zone_pl += "set pal maxcolors 4; set pm3d corners2color c1; unset colorbox;"

    map_pl = 'set pm3d\n'
    if is_map: map_pl += 'set pm3d map\n'

    for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]:
        file_mod = list()
        if is_map: file_mod.append('map')
        if is_zone: file_mod.append('zone')
        if is_swap: file_mod.append('swap')

        if x: file_mod.append('rx')
        if y: file_mod.append('ry')
        s0_rev, s0_max, s0_min = process_reverse(x, s0_max, s0_min)
        s1_rev, s1_max, s1_min = process_reverse(y, s1_max, s1_min)
        gr3d = gnu_rend()
        gr3d.put_some(plot_tpl % (latex(s0), s0_min, s0_max, s0_rev, latex(s1), s1_min, s1_max, s1_rev,
                                 map_pl, zone_pl, j_foo) )
        gr3d.compile( report_plot_file_name % ( (len(file_mod) and "_" or "") + "_".join(file_mod) ) )
def print_latex_new():

    ##Obtendo as respostas em Latex
    RespostasEmLatex = [0]*(len(Respostas))
    raizEmLatex = [0]*(len(Respostas[0]))
    str_raizLatex =""
    for i in range(len(Respostas[0])):
                raizEmLatex[i] = '$'+str(latex(Respostas[0][i])) +'$'
    for i in range(len(raizEmLatex)):
                rn = "r"+str(i+1)+" = "
                rn = '$'+str(latex(rn)) +'$'
                str_raizLatex = str_raizLatex+"\t"+rn+raizEmLatex[i]
        ##print len(RespostasEmLatex)
    for i in range(len(Respostas)):
                RespostasEmLatex[i] = '$'+str(latex(Respostas[i])) +'$'
        #print RespostasEmLatex
        #xTLatex = '$' + latex(xT) +'$'
        ###Preparando para imprimir


    dif = 0.9 -0.77
    xdif = -0.15
    font = {'family' : 'Sans',
                'weight' : 'normal',
                'size'   : 18}

    figure_latex = Figure(facecolor = 'white')
    plot_latex = figure_latex.add_subplot(111)
    #plot_latex.rc('font',**font)
    #axes_latex = plot_latex.axes(frameon = False)
    #axes_latex.get_xaxis().tick_bottom()
    #axes_latex.get_xaxis().set_visible(False)
    #axes_latex.axes.get_yaxis().set_visible(False)
    plot_latex.plot(arange(0.0,50.0,1.2))
    plot_latex.canvas.draw()
Esempio n. 21
0
    def solution_statement(self):
        lines = solutions.Lines()

        ball_combinations = itertools.combinations(self._qp['items'], self._qp['n_selections'])
        valid_total_sum_combinations = [i for i in ball_combinations if sum(i) == self._qp['sum']]

        # e.g. Pr(sum = 14) = 3! * Pr(ball1 = 3 and ball2 = 5 and ball3 = 6)
        lines += r'$Pr(\text{{sum}} = {sum}) = {sum_of_probabilities}$'.format(
            sum=self._qp['sum'],
            sum_of_probabilities=expressions.sum_combination_probabilities(valid_total_sum_combinations)
        )

        probability_of_a_single_combination = self.single_combination_probability()
        prob_instance = r'{n_valid_permutations} \times {probability_of_a_single_combination}'.format(
            n_valid_permutations=math.factorial(self._qp['n_selections']),
            probability_of_a_single_combination=sympy.latex(probability_of_a_single_combination)
        )

        # e.g. = 6 * (1/120) + 6 * (1/120)
        lines += r'$= {probabilities_sum}$'.format(
            probabilities_sum=' + '.join([prob_instance] * len(valid_total_sum_combinations))
        )

        answer = probability_of_a_single_combination * math.factorial(self._qp['n_selections']) * len(valid_total_sum_combinations)
        # e.g. = 1/20
        lines += r'$= {answer}$'.format(answer=sympy.latex(answer))

        return lines.write()
Esempio n. 22
0
def print_model(model, print_residuals=True):

    from sympy import latex

    if print_residuals:
        from dolo.symbolic.model import compute_residuals

        res = compute_residuals(model)
    if len(model.equations_groups) > 0:
        if print_residuals:
            eqs = [["", "Equations", "Residuals"]]
        else:
            eqs = [["", "Equations"]]
        for groupname in model.equations_groups:
            eqg = model.equations_groups
            eqs.append([groupname, ""])
            if print_residuals:
                eqs.extend(
                    [["", "${}$".format(latex(eq)), str(res[groupname][i])] for i, eq in enumerate(eqg[groupname])]
                )
            else:
                eqs.extend([["", "${}$".format(latex(eq))] for eq in eqg[groupname]])
        txt = print_table(eqs, header=True)
        return txt

    else:
        if print_residuals:
            table = [(i + 1, "${}$".format(latex(eq)), str(res[i])) for i, eq in enumerate(model.equations)]
        else:
            table = [(i + 1, "${}$".format(latex(eq))) for i, eq in enumerate(model.equations)]
        txt = print_table([["", "Equations"]] + table, header=True)
    return txt
Esempio n. 23
0
 def _latex(self, *args):        
     equations = []
     t = sympy.Symbol('t')
     for eq in self._equations.itervalues():
         # do not use SingleEquations._latex here as we want nice alignment
         varname = sympy.Symbol(eq.varname)
         if eq.type == DIFFERENTIAL_EQUATION:
             lhs = sympy.Derivative(varname, t)
         else:
             # Normal equation or parameter
             lhs = varname
         if not eq.type == PARAMETER:
             rhs = eq.expr.sympy_expr
         if len(eq.flags):
             flag_str = ', flags: ' + ', '.join(eq.flags)
         else:
             flag_str = ''
         if eq.type == PARAMETER:
             eq_latex = r'%s &&& \text{(unit: $%s$%s)}' % (sympy.latex(lhs),                                 
                                                           sympy.latex(eq.unit),
                                                           flag_str)
         else:
             eq_latex = r'%s &= %s && \text{(unit: $%s$%s)}' % (sympy.latex(lhs),
                                                                sympy.latex(rhs),
                                                                sympy.latex(eq.unit),
                                                                flag_str)
         equations.append(eq_latex)
     return r'\begin{align}' + r'\\'.join(equations) + r'\end{align}'
Esempio n. 24
0
def substitute(expr, var, value):
    latex = sympy.latex(expr)
    print(latex)

    latex = latex.replace(sympy.latex(var), sympy.latex(value))

    return latex
def print_latex():

        for i in range(1,7):Respostas[i] = sympy.nsimplify(Respostas[i].evalf(prec), rational = True,tolerance = 0.05)



        # 0- Raizes; 1- Forma Natural da respsota; 2- Resposta Natural;
        # 3- Resposta Particular; 4- Resposta Transitoria; 5- Respsota Forcada
        # 6- Resposta Completa
        # 7-Sinal de entrada x(t)
        ###
        eqDiferencialEntradaLatex = latex(eq)

        ##Perfumaria
        dif = 0.9 -0.77
        xdif = -0.15
        font = {'family' : 'Sans',
                'weight' : 'normal',
                'size'   : 18}

        plt.rc('font', **font)

        ##Obtendo as respostas em Latex
        RespostasEmLatex = [0]*(len(Respostas))
        raizEmLatex = [0]*(len(Respostas[0]))
        str_raizLatex =""
        for i in range(len(Respostas[0])):
                raizEmLatex[i] = '$'+str(latex(Respostas[0][i])) +'$'
        for i in range(len(raizEmLatex)):
                rn = "r"+str(i+1)+" = "
                rn = '$'+str(latex(rn)) +'$'
                str_raizLatex = str_raizLatex+"\t"+rn+raizEmLatex[i]
        ##print len(RespostasEmLatex)
        for i in range(len(Respostas)):
                RespostasEmLatex[i] = '$'+str(latex(Respostas[i])) +'$'
        #print RespostasEmLatex
        xTLatex = '$' + latex(xT) +'$'
        ###Preparando para imprimir
        log_figure = plt.figure("Representacao",facecolor='white')
        ax1 = plt.axes(frameon = False)
        ax1.get_xaxis().tick_bottom()
        ax1.get_xaxis().set_visible(False)
        ax1.axes.get_yaxis().set_visible(False)
        for i in range(0,8,1):
                plt.axhline(0.86-dif*i,xmin = -5,xmax = 5, color = 'black',lw =0.2, linestyle = ':')
        #log_figure.figure("Forma_Representativa:")
        plt.title("Eq dif: 0="+ur'$'+eqDiferencialEntradaLatex+'$', loc = 'left',fontsize = 15)
        plt.text(xdif,0.89,'Forma Natural:'+ur''+RespostasEmLatex[1])
        plt.text(xdif,0.9-dif,'yn(t) = '+ur''+RespostasEmLatex[2])
        plt.text(xdif,0.9-2*dif,'ypar(t) = '+ur''+RespostasEmLatex[3])
        plt.text(xdif,0.9-3*dif,'ytran(t) = '+ur''+RespostasEmLatex[4])
        plt.text(xdif,0.9-4*dif,'yfor(t) = '+ur''+RespostasEmLatex[5])
        plt.text(xdif,0.9-5*dif,'yc(t) = '+ur''+RespostasEmLatex[6])
        plt.text(xdif,0.9-6*dif,'x(t) = '+ur''+xTLatex)
        plt.text(xdif,0.9-7*dif,'Raiz(es): '+ur''+str_raizLatex)

        ##log_figure.set_size_inches(19.2,10.8)
        #log_figure.show()
        plt.show()
        return log_figure
 def question_statement(self):
     return r'Find $Pr(X {minor_direction} {minor_bound} | X {major_direction} {major_bound})$.'.format(
         minor_direction=self._qp['minor_direction'],
         minor_bound=sympy.latex(self._qp['minor_bound']),
         major_direction=self._qp['major_direction'],
         major_bound=sympy.latex(self._qp['major_bound'])
     )
Esempio n. 27
0
    def solution_statement(self):
        lines = solutions.Lines()

        if self._qp['question_type'] == 'mean':
            lines += r'$E(X) = \sum\limits_{{i=1}}^{{n}} x_{{i}} \times Pr(X = x_{{i}})$'

            lines += r'$= {expectation_of_x} = {answer}$'.format(
                expectation_of_x=expressions.discrete_expectation_x(self._qp['prob_table']),
                answer=self._qp['answer']
            )

        elif self._qp['question_type'] == 'variance':

            lines += r'$Var(X) = E(X^2) - (E(X))^2$'

            lines += r'$= [{expectation_of_x_squared}] - [{expectation_of_x}]^2$'.format(
                expectation_of_x_squared=expressions.discrete_expectation_x_squared(self._qp['prob_table']),
                expectation_of_x=expressions.discrete_expectation_x(self._qp['prob_table'])
            )

            expectation_of_x = prob_table.expectation_x(self._qp['prob_table'])
            expectation_of_x_squared = prob_table.expectation_x(self._qp['prob_table'], power=2)
            lines += r'$= {expectation_of_x_squared} - {expectation_of_x}^2 = {answer}$'.format(
                expectation_of_x_squared=sympy.latex(expectation_of_x_squared),
                expectation_of_x=sympy.latex(expectation_of_x),
                answer=sympy.latex(self._qp['answer'])
            )

        elif self._qp['question_type'] == 'mode':
            lines += r'${answer}$'.format(
                answer=prob_table.mode(self._qp['prob_table'])
            )

        return lines.write()
    def solution_statement(self):
        lines = solutions.Lines()

        integral, integral_intermediate, integral_intermediate_eval = \
            expressions.integral_trifecta(expr=self._qp['equation'], lb=self._qi['domain'].left, ub=self._qi['domain'].right)

        lines += r'$Pr(X {direction} {unknown}) = {integral}$'.format(
            direction=self._qi['inequality'],
            unknown=self._qi['unknown'],
            integral=integral
        )

        lines += r'$= {0}$'.format(integral_intermediate)

        lines += r'$= {integral_intermediate_eval} = {value}$'.format(
            integral_intermediate_eval=integral_intermediate_eval,
            value=sympy.latex(self._qi['value'])
        )

        if self._qp['direction'] == 'left':
            left_side = self._qp['equation'].integrate().subs({x: self._qi['unknown']})
            right_side = self._qi['value'] + self._qp['equation'].integrate().subs({x: self._qp['domain'].left})
        else:
            left_side = -1 * self._qp['equation'].integrate().subs({x: self._qi['unknown']})
            right_side = self._qi['value'] - self._qp['equation'].integrate().subs({x: self._qp['domain'].right})

        lines += r'${0} = {1}$'.format(sympy.latex(left_side), sympy.latex(right_side))

        lines += expressions.shrink_solution_set(left_side, self._qp['domain'], expr_equal_to=right_side, var=self._qi['unknown'])

        return lines.write()
Esempio n. 29
0
	def integrar(self,event):
		x = sympy.Symbol("x")
		fx = self.fun.GetValue() # Función original
		fx = preproc(fx)
		Fx = sympy.integrate(eval(fx)) # Función integrada
		str_Fx = "$\int \, (%s) \,dx \,= \,%s + C$"%(sympy.latex(eval(fx)), sympy.latex(Fx))
		self.string.set_text(str_Fx)
		self.canvas.draw()
Esempio n. 30
0
	def derivar(self,event):
		x = sympy.Symbol("x")
		fx = self.fun.GetValue() # Función original
		fx = preproc(fx)
		Fx = sympy.diff(eval(fx)) # Función derivada
		str_Fx = "$\\frac{d}{dx}(%s)\, = \,%s$"%(sympy.latex(eval(fx)), sympy.latex(Fx))
		self.string.set_text(str_Fx)
		self.canvas.draw() # "Redibujar"
Esempio n. 31
0
    def to_latex(self, comments=False):

        COMP = {
            'LEQ' : r"""\leq""",
            'EQ' : r"""=""",
            'GEQ' : r"""\geq""",
            }

        prefix = r"""
        \[
        \left\{
                \begin{array}{"""

        prefix += "cc"*(len(self.variables)+2) + "}"

        suffix1 = r"""
                \end{array}
        \right.
        \]
        \["""

        suffix2 = r"""\]"""

        lines = [prefix]

        if self.standard:
            for constraint in self.constraints:
                lines.append(constraint.std_latex_array(out_var=self.out))

            # import pdb; pdb.set_trace()
            utility_line = "z & = & "
            utility = self.utility_constraint
            if utility.get_scalar()[1] == 0:
                skip = True
            else:
                skip = False
                utility_line += sympy.latex(utility.get_scalar()[1])
            for variable in self.variables:
                var_coeff = utility.get_coeff(variable)[1]
                substitution = utility.substitutions.get(variable, variable)
                if var_coeff > 0:
                    if skip:
                        utility_line += " &  & " + sympy.latex(sympy.Mul(var_coeff, substitution, evaluate=False))
                        skip = False
                    else:
                        utility_line += " & + & " + sympy.latex(sympy.Mul(var_coeff, substitution, evaluate=False))
                elif var_coeff < 0:
                    utility_line += " & - & " + sympy.latex(sympy.Mul(-var_coeff, substitution, evaluate=False))
                    skip = False


            lines.append(utility_line)
            lines.append(suffix1)

        else:
            for constraint in self.constraints:
                lines.append(constraint.latex_array())
            lines.append(suffix1)
            lines.append(self.optimizer + " z="+sympy.latex(self.utility))
        lines.append(suffix2)
        if self.current_solution:
            lines.append(self.view_solution())
        if comments:
            return "\n".join([self.comments] + lines)
        else:
            return "\n".join(lines)
    # argument
    # register_size, gates, measurements, controlled_gates, circuit and
    # input_register need to be in data
    data = json.loads(sys.argv[1])

    try:
        # Initialize a new simulation using this data
        sim = QuantumSimulation(data)
        # Run the simulation
        sim.simulate()

        # Print out a JSONified version of the results
        print pipes.quote(
            json.dumps({
                'results': sim.results,
                'probabilities': sim.probabilities
            }))
    except InvalidMatrix, e:
        # If some of the matrices weren't unitary when they were meant to be,
        # or weren't hermitian when they were meant to be then return an
        # error back to ruby
        print pipes.quote(
            json.dumps({
                'error': {
                    'type': 'invalid_matrix',
                    'matrix': urllib.quote(latex(e.matrix)),
                    'size': e.matrix.rows,
                    'mtype': e.mtype
                }
            }))
Esempio n. 33
0
def eq_solver(equation):
    list_eq = []
    for eq in equation:
        string = ""
        # left : 0 , right : 1
        for i, side in enumerate(eq.split("=")):
            if side[0] not in ["+", "-"]:
                side = "+" + side
            pos_sign = [i for i, char in enumerate(side) if char in ["+", "-"]]
            pos_sign.append(len(side))

            for j in range(len(pos_sign) - 1):
                string += process_str(side[pos_sign[j]:pos_sign[j + 1]], i)
        list_eq.append(string)
    print(list_eq)
    result = sympy.solve([parse_expr(i) for i in list_eq])

    # print(result)
    str_result = ""
    if type(result) == dict:
        for i, key in enumerate(result):
            if i == 0:
                if len(result) == 1:
                    str_result += "( {} = {} )".format(
                        sympy.latex(key), sympy.latex(result[key]))
                else:
                    str_result += "( {} = {} ,".format(
                        sympy.latex(key), sympy.latex(result[key]))
            elif i == len(result) - 1:
                str_result += " {} = {} )".format(sympy.latex(key),
                                                  sympy.latex(result[key]))
            else:
                str_result += " {} = {} ,".format(sympy.latex(key),
                                                  sympy.latex(result[key]))
        return [str_result]

    else:
        if len(result) == 0:
            return ["PHƯƠNG TRÌNH VÔ NGHIỆM"]
        list_result = []
        for r in result:
            str_result = ""
            for i, key in enumerate(r):
                if i == 0:
                    if len(r) == 1:
                        str_result += "( {} = {} )".format(
                            sympy.latex(key), sympy.latex(r[key]))
                    else:
                        str_result += "( {} = {} ,".format(
                            sympy.latex(key), sympy.latex(r[key]))
                elif i == len(r) - 1:
                    str_result += " {} = {} )".format(sympy.latex(key),
                                                      sympy.latex(r[key]))
                else:
                    str_result += " {} = {} ,".format(sympy.latex(key),
                                                      sympy.latex(r[key]))
        # Replace "//" to "/"
            list_result.append(str_result)
        return list_result
Esempio n. 34
0
plt.ylabel('Angle (rad)')
plt.grid()
plt.show()

# DETERMINE THE IMPULSE RESPONSE OF THE SYSTEM (kick)
# F(s) = 1, X1(s) = G_x, x1(t) = inv_lap(x1)
x1_t = sym.inverse_laplace_transform(G_x, s, t)
print(sym.latex(x1_t))
sym.pprint(G_x)
# unfortunately I seem to be getting a bad result here as it cannot be computed in the
# c.impulse_response()

# DETERMINE THE STEP RESPONSE OF THE SYSTEM (push)
x3_step_t = sym.inverse_laplace_transform(G_x/s, s, t)
sym.pprint(x3_step_t)
print(sym.latex(x3_step_t))
'''
# DETERMINE THE FREQUENCY RESPONSE OF THE SYSTEM (shake)
w = sym.symbols('w', real=True, positive=True)
x3_freq_t = sym.inverse_laplace_transform(G_x * w**2 / (s**2 + w**2), s, t)
sym.pprint(x3_freq_t.simplify())
print(sym.latex(x3_freq_t))
'''
t_imp, x3_imp = C.impulse_response(G_x)
plt.plot(t_imp, x3_imp)
plt.xlabel('Time (s)')
plt.ylabel('Angle (rad)')
plt.grid()
plt.show()
'''
Esempio n. 35
0
 def latex(self, prec=15, nested_scope=None):
     """Return the corresponding math mode latex string."""
     # pylint: disable=unused-argument
     # TODO prec ignored
     return sympy.latex(self.sym(nested_scope))
Esempio n. 36
0
print(r'\bm{\mbox{Two dimensioanal submanifold - Unit sphere}}')
print(r'\text{Basis not normalised}')

sp2coords = (theta, phi) = symbols('theta phi', real=True)
sp2param = [sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta)]

sp2 = g3.sm(sp2param, sp2coords, norm=False)  # submanifold

(etheta, ephi) = sp2.mv()  # sp2 basis vectors
(rtheta, rphi) = sp2.mvr()  # sp2 reciprocal basis vectors

sp2grad = sp2.grad

sph_map = [1, theta, phi]  # Coordinate map for sphere of r = 1
print(r'(\theta,\phi)\rightarrow (r,\theta,\phi) = ', latex(sph_map))

(etheta, ephi) = sp2.mv()
print(r'e_\theta | e_\theta = ', etheta | etheta)
print(r'e_\phi | e_\phi = ', ephi | ephi)

print('g =', sp2.g)
print(r'\text{g\_inv = }', latex(sp2.g_inv))

#print(r'\text{signature = ', latex(sp2.signature()))

Cf1 = sp2.Christoffel_symbols(mode=1)
Cf1 = permutedims(Array(Cf1), (2, 0, 1))
print(r'\text{Christoffel symbols of the first kind: }')
print(r'\Gamma_{1, \alpha, \beta} = ', latex(Cf1[0, :, :]), r'\quad',
      r'\Gamma_{2, \alpha, \beta} = ', latex(Cf1[1, :, :]))
Esempio n. 37
0
    sys.path.insert(0, dir_path)
    from jkPyLaTeX import LatexDoc, ldtTaller

from random import shuffle

from sympy import symbols, latex, sin, cos, tan, diff

x = symbols('x')

exercises = ''
answers = ''
excN = list(range(2, 10))
shuffle(excN)
for c in excN:
    eji = c * x**2 + x * cos(c * x) / x
    exercises += '  \\item $%s$' % latex(eji)
    answers += '  \\item $%s$' % latex(diff(eji))

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Create the document
doc = ldtTaller('doc', 'Derivative', 'Calculus', '')
# Add content
doc.addSlice('exercises', exercises)
doc.addSlice('answers', answers)

#template or content
fnameMainSlice = './example/example.tex'
doc.setMainSlice(fnameMainSlice)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#Save the files necessary to compile in ./texOut
Esempio n. 38
0
display(pF)

# %%
F = -log(pF[0]) - C
F = F.expand(force=True)
F = F.collect(sigma_s)
F = F.collect(Sigma_x)
F = syp.nsimplify(F)
display(F)

# %%
gd_mux = Eq(-diff("F", mux, evaluate=False),
            -syp.separatevars(diff(F, mux), force=True),
            evaluate=False)
display(gd_mux)
print(syp.latex(gd_mux))

# %%
d_dmux = Eq(-diff("F", dmux, evaluate=False),
            -diff(F, dmux).simplify(),
            evaluate=False)
display(d_dmux)
print(syp.latex(d_dmux))

# %%
a = symbols("a", real=True)
sa = syp.Function("s")(a)
F = F.subs(s, sa)

da = Eq(-diff("F", "a", evaluate=False),
        -diff(F, a).simplify(),