Esempio n. 1
0
 def __new__(cls, arg):
     arg = sympify(arg)
     r = cls.canonize(arg)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, arg)
     return obj
Esempio n. 2
0
 def __new__(cls, dimension):
     dimension = sympify(dimension)
     r = cls.eval(dimension)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, dimension, **{'commutative': False})
     return obj
Esempio n. 3
0
    def __new__ (cls, arg, **options):
#        print "Inverse(", arg, ")"
#        print INVERTIBLE
        if isinstance(arg, Inverse):
            return arg.args[0]
        if arg.is_Number:
            return 1 / arg

        arg_rank = expr_rank(arg)
        if arg_rank == 1:
            raise NotInvertibleError

        if is_one(arg):
            return arg
        if is_zero(arg):
            raise NotInvertibleError

        # FIXME: Funky case trying to catch lower triangular or diagonal
        #        muls like T(P_0)*A*P_0
        if arg in INVERTIBLE:
            pass
        elif isinstance(arg, TensorExpr) and not arg.has_inverse:
            raise NotInvertibleError
        elif isinstance(arg, Mul):
            if arg.args[0] == S(-1):
                return - Inverse(reduce(operator.mul, arg.args[1:]))
        if not expr_invertible(arg):
            raise NotInvertibleError
        options['commutative'] = arg.is_commutative
        return Basic.__new__(cls, arg, **options)
Esempio n. 4
0
 def _new(cls, *args, **kwargs):
     if len(args)==1 and isinstance(args[0], ImmutableMatrix):
         return args[0]
     rows, cols, mat = MatrixBase._handle_creation_inputs(*args, **kwargs)
     shape = Tuple(rows, cols)
     mat = Tuple(*mat)
     return Basic.__new__(cls, shape, mat)
Esempio n. 5
0
    def __new__(cls, arg0, arg1, **options):
        new_args = [arg0, arg1]



        #check for T(x)*y and T(x)*A*y
        arg_list = list(arg0.args) + list(arg1.args)
        if len(arg_list) < 3 and \
            all(map(lambda x: isinstance(x, TensorExpr), arg_list)):
            txy = None
            A = None
            if isinstance(arg0, Transpose):
                if isinstance(arg1, Mul) and len(arg1.args) <= 2:
                    txy = [arg0.args[0]] + [arg1.args[-1]]
                    if len(arg1.args) == 2:
                        A = arg1.args[0]
            elif isinstance(arg0, Mul) and len(arg1.args) <= 2:
                if isinstance(arg0.args[0], Transpose) and isinstance(arg1, Tensor):
                    txy = [arg0.args[0].args[0], arg1]
                    if len(arg0.args) == 2:
                        A = arg0.args[1]
            if txy:
                stxy = sorted(txy, Basic.compare)
                if txy != stxy:
                    if not A:
                        return Inner(Transpose(stxy[0]), stxy[1])
                    if A and A.is_symmetric:
                        return Inner(Transpose(stxy[0]) * A, stxy[1])

#        if expr_rank(arg0) != 1 and expr_rank(arg1) != 1:
#            return Mul(arg0, arg1)
#        for n in xrange(len(new_args)):
#            if isinstance(new_args[n], Transpose):
#                new_args[n] = new_args[n].args[0]
        return Basic.__new__(cls, *new_args, **options)
Esempio n. 6
0
 def __new__(cls, sym, dist):
     sym = sympify(sym)
     if isinstance(dist, SingleContinuousDistribution):
         return SingleContinuousPSpace(sym, dist)
     if isinstance(dist, SingleDiscreteDistribution):
         return SingleDiscretePSpace(sym, dist)
     return Basic.__new__(cls, sym, dist)
Esempio n. 7
0
 def __new__(cls, i, j):
     i, j = map(sympify, (i, j))
     r = cls.canonize(i, j)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, i, j, commutative=True)
     return obj
Esempio n. 8
0
    def __new__(cls, iterable=None, shape=None, **kwargs):
        from sympy.utilities.iterables import flatten

        shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
        shape = Tuple(*map(_sympify, shape))
        loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else 0

        # Sparse array:
        if isinstance(flat_list, (dict, Dict)):
            sparse_array = Dict(flat_list)
        else:
            sparse_array = {}
            for i, el in enumerate(flatten(flat_list)):
                if el != 0:
                    sparse_array[i] = _sympify(el)

        sparse_array = Dict(sparse_array)

        self = Basic.__new__(cls, sparse_array, shape, **kwargs)
        self._shape = shape
        self._rank = len(shape)
        self._loop_size = loop_size
        self._sparse_array = sparse_array

        return self
Esempio n. 9
0
 def __new__(cls, dimension):
     dimension = sympify(dimension)
     r = cls.eval(dimension)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, dimension)
     return obj
Esempio n. 10
0
    def __new__(cls, *args):
        # args should be a tuple - a variable length argument list
        obj = Basic.__new__(cls, *args)
        obj._circuit = Mul(*args)
        obj._rules = generate_gate_rules(args)
        obj._eq_ids = generate_equivalent_ids(args)

        return obj
Esempio n. 11
0
 def __new__(cls, M):
     if not isinstance(M, Matrix):
         M = Matrix(M)
     data = Tuple(*M._mat)
     shape = Tuple(*sympify(M.shape))
     obj = Basic.__new__(cls, data, shape)
     obj._mat = M
     return obj
Esempio n. 12
0
    def __new__(cls, mat):
        if not mat.is_Matrix:
            raise TypeError("input to Trace, %s, is not a matrix" % str(mat))

        if not mat.is_square:
            raise ShapeError("Trace of a non-square matrix")

        return Basic.__new__(cls, mat)
Esempio n. 13
0
 def __new__(cls, bra, ket):
     assert isinstance(bra, FockStateBra), 'must be a bra'
     assert isinstance(ket, FockStateKet), 'must be a key'
     r = cls.canonize(bra, ket)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, *(bra, ket), **dict(commutative=True))
     return obj
Esempio n. 14
0
    def __new__(cls, mat):
        if not mat.is_Matrix:
            raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))

        if not mat.is_square:
            raise ShapeError("Det of a non-square matrix")

        return Basic.__new__(cls, mat)
Esempio n. 15
0
 def __new__(cls, mat):
     if not isinstance(mat, Matrix):
         mat = Matrix(mat)
     data = Tuple(*mat.mat)
     shape = Tuple(*sympify(mat.shape))
     obj = Basic.__new__(cls, data, shape)
     obj.mat = mat
     return obj
Esempio n. 16
0
 def _new(cls, *args, **kwargs):
     if len(args) == 1 and isinstance(args[0], ImmutableMatrix):
         return args[0]
     rows, cols, flat_list = MatrixBase._handle_creation_inputs(*args, **kwargs)
     rows = Integer(rows)
     cols = Integer(cols)
     mat = Tuple(*flat_list)
     return Basic.__new__(cls, rows, cols, mat)
Esempio n. 17
0
	def __new__(cls, num, denom=None):
		obj = Basic.__new__(cls)
		if denom is None:
			if isinstance(num, str):
				obj.p, obj.q = parse_rational(num)
		else:
			obj.p = num
			obj.q = denom
		return obj
Esempio n. 18
0
 def __new__(cls, dist):
     if not isinstance(dist, (ContinuousDistribution, DiscreteDistribution)):
         raise ValueError(filldedent('''CompoundDistribution can only be
          initialized from ContinuousDistribution or DiscreteDistribution
          '''))
     _args = dist.args
     if not any([isinstance(i, RandomSymbol) for i in _args]):
         return dist
     return Basic.__new__(cls, dist)
Esempio n. 19
0
 def __new__(cls,dist, rvs):
     if not all([isinstance(rv, (Indexed, RandomSymbol))] for rv in rvs):
         raise ValueError(filldedent('''Marginal distribution can be
          intitialised only in terms of random variables or indexed random
          variables'''))
     rvs = Tuple.fromiter(rv for rv in rvs)
     if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
         return dist
     return Basic.__new__(cls, dist, rvs)
Esempio n. 20
0
    def __new__(cls, mat):

        if not mat.is_Matrix:
            return mat

        try:
            return mat._eval_transpose()
        except (AttributeError, NotImplementedError):
            return Basic.__new__(cls, mat)
Esempio n. 21
0
 def __new__(cls, pspace, symbol=None):
     if symbol is None:
         # Allow single arg, representing pspace == PSpace()
         pspace, symbol = PSpace(), pspace
     if not isinstance(symbol, Symbol):
         raise TypeError("symbol should be of type Symbol")
     if not isinstance(pspace, PSpace):
         raise TypeError("pspace variable should be of type PSpace")
     return Basic.__new__(cls, pspace, symbol)
Esempio n. 22
0
def test_expr_fns():
    from sympy.strategies.rl import rebuild
    from sympy import Add
    x, y = map(Symbol, 'xy')
    expr = x + y**3
    e = bottom_up(lambda x: x + 1, expr_fns)(expr)
    b = bottom_up(lambda x: Basic.__new__(Add, x, 1), basic_fns)(expr)

    assert rebuild(b) == e
Esempio n. 23
0
 def __new__(cls, mat):
     try:
         return mat._eval_adjoint()
     except (AttributeError, NotImplementedError):
         pass
     try:
         return mat.adjoint()
     except (AttributeError, NotImplementedError):
         pass
     return Basic.__new__(cls, mat)
Esempio n. 24
0
 def _new(cls, *args, **kwargs):
     s = MutableSparseMatrix(*args)
     rows = Integer(s.rows)
     cols = Integer(s.cols)
     mat = Dict(s._smat)
     obj = Basic.__new__(cls, rows, cols, mat)
     obj.rows = s.rows
     obj.cols = s.cols
     obj._smat = s._smat
     return obj
Esempio n. 25
0
 def __new__(cls, sym, dist):
     if isinstance(dist, SingleContinuousDistribution):
         return SingleContinuousPSpace(sym, dist)
     if isinstance(dist, SingleDiscreteDistribution):
         return SingleDiscretePSpace(sym, dist)
     if isinstance(sym, string_types):
         sym = Symbol(sym)
     if not isinstance(sym, Symbol):
         raise TypeError("s should have been string or Symbol")
     return Basic.__new__(cls, sym, dist)
Esempio n. 26
0
 def __new__(cls, density):
     density = Dict(density)
     for k in density.values():
         k_sym = sympify(k)
         if fuzzy_not(fuzzy_and((k_sym.is_nonnegative, (k_sym - 1).is_nonpositive))):
             raise ValueError("Probability at a point must be between 0 and 1.")
     sum_sym = sum(density.values())
     if sum_sym != 1:
         raise ValueError("Total Probability must be equal to 1.")
     return Basic.__new__(cls, density)
Esempio n. 27
0
 def _new(cls, *args, **kwargs):
     shape, flat_list = cls._handle_ndarray_creation_inputs(*args, **kwargs)
     shape = Tuple(*map(_sympify, shape))
     flat_list = flatten(flat_list)
     flat_list = Tuple(*flat_list)
     self = Basic.__new__(cls, flat_list, shape, **kwargs)
     self._shape = shape
     self._array = list(flat_list)
     self._rank = len(shape)
     self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else 0
     return self
Esempio n. 28
0
    def __new__(cls, mat):
        if not mat.is_Matrix:
            raise TypeError("input to Det, %s, is not a matrix" % str(mat))

        if not mat.is_square:
            raise ShapeError("Det of a non-square matrix")

        try:
            return mat.det()
        except (AttributeError, NotImplementedError):
            return Basic.__new__(cls, mat)
Esempio n. 29
0
 def __new__(cls, parent, rowslice, colslice):
     rowslice = normalize(rowslice, parent.shape[0])
     colslice = normalize(colslice, parent.shape[1])
     if not (len(rowslice) == len(colslice) == 3):
         raise IndexError()
     if ((0 > rowslice[0]) == True or
         (parent.shape[0] < rowslice[1]) == True or
         (0 > colslice[0]) == True or
         (parent.shape[1] < colslice[1]) == True):
         raise IndexError()
     return Basic.__new__(cls, parent, Tuple(*rowslice), Tuple(*colslice))
Esempio n. 30
0
 def __new__(cls, symbol, pspace=None):
     from sympy.stats.joint_rv import JointRandomSymbol
     if pspace is None:
         # Allow single arg, representing pspace == PSpace()
         pspace = PSpace()
     if not isinstance(symbol, Symbol):
         raise TypeError("symbol should be of type Symbol")
     if not isinstance(pspace, PSpace):
         raise TypeError("pspace variable should be of type PSpace")
     if cls == JointRandomSymbol and isinstance(pspace, SinglePSpace):
         cls = RandomSymbol
     return Basic.__new__(cls, symbol, pspace)
Esempio n. 31
0
 def __new__(cls, *args):
     r = cls.eval(args)
     if isinstance(r, Basic):
         return r
     obj = Basic.__new__(cls, *args)
     return obj
Esempio n. 32
0
 def __new__(cls, rows, cols, lamda):
     rows, cols = sympify(rows), sympify(cols)
     return Basic.__new__(cls, rows, cols, lamda)
Esempio n. 33
0
 def __new__(cls):
     obj = Basic.__new__(cls)
     return obj
Esempio n. 34
0
 def __new__(cls, density):
     density = Dict(density)
     return Basic.__new__(cls, density)
Esempio n. 35
0
 def __new__(cls, sym, state_space=S.Reals, **kwargs):
     sym = _symbol_converter(sym)
     state_space = _set_converter(state_space)
     return Basic.__new__(cls, sym, state_space)
Esempio n. 36
0
 def __new__(cls, process, matrix):
     if not isinstance(process, DiscreteMarkovChain):
         raise ValueError("Currently only DiscreteMarkovChain "
                             "support TransitionMatrixOf.")
     matrix = _matrix_checks(matrix)
     return Basic.__new__(cls, process, matrix)
Esempio n. 37
0
 def __new__(cls, pdf, set=Interval(-oo, oo)):
     return Basic.__new__(cls, pdf, set)
Esempio n. 38
0
 def __new__(cls, symbol, n, m, pspace=None):
     n, m = _sympify(n), _sympify(m)
     symbol = _symbol_converter(symbol)
     return Basic.__new__(cls, symbol, n, m, pspace)
Esempio n. 39
0
 def __new__(cls, symbols, *args):
     symbols = FiniteSet(*symbols)
     return Basic.__new__(cls, symbols, *args)
Esempio n. 40
0
 def __new__(cls, s, distribution):
     if isinstance(s, string_types):
         s = Symbol(s)
     if not isinstance(s, Symbol):
         raise TypeError("s should have been string or Symbol")
     return Basic.__new__(cls, s, distribution)
Esempio n. 41
0
 def __new__(cls, idx_obj, pspace=None):
     if not isinstance(idx_obj, (Indexed, Function)):
         raise TypeError(
             "An Function or Indexed object is expected not %s" % (idx_obj))
     return Basic.__new__(cls, idx_obj, pspace)
Esempio n. 42
0
 def __new__(cls, fulldomain, condition):
     condition = condition.xreplace(
         dict((rs, rs.symbol) for rs in random_symbols(condition)))
     return Basic.__new__(cls, fulldomain, condition)
Esempio n. 43
0
def test_rebuild():
    from sympy import Add
    expr = Basic.__new__(Add, S(1), S(2))
    assert rebuild(expr) == 3
Esempio n. 44
0
 def __new__(cls, pspace, symbol):
     assert isinstance(symbol, Symbol)
     assert isinstance(pspace, PSpace)
     return Basic.__new__(cls, pspace, symbol)
Esempio n. 45
0
 def __new__(cls, interval):
     if not isinstance(interval, Interval):
         raise TypeError('L2 interval must be an Interval instance: %r' %
                         interval)
     obj = Basic.__new__(cls, interval)
     return obj
Esempio n. 46
0
 def __new__(cls, base, exp):
     return Basic.__new__(cls, _sympify(base), _sympify(exp))
Esempio n. 47
0
File: drv.py Progetto: yyht/sympy
 def __new__(cls, pdf, set=S.Integers):
     return Basic.__new__(cls, pdf, set)
Esempio n. 48
0
 def __new__(cls, sym, state_space=S.Reals, trans_probs=None):
     sym = _symbol_converter(sym)
     state_space = _set_converter(state_space)
     if trans_probs != None:
         trans_probs = _matrix_checks(trans_probs)
     return Basic.__new__(cls, sym, state_space, trans_probs)
Esempio n. 49
0
 def __new__(cls, pspace, symbol):
     if not isinstance(symbol, Symbol):
         raise TypeError("symbol should be of type Symbol")
     if not isinstance(pspace, PSpace):
         raise TypeError("pspace variable should be of type PSpace")
     return Basic.__new__(cls, pspace, symbol)
Esempio n. 50
0
File: frv.py Progetto: ronit19/sympy
 def __new__(cls, symbol, set):
     if not isinstance(set, FiniteSet) and \
         not isinstance(set, Intersection):
         set = FiniteSet(*set)
     return Basic.__new__(cls, symbol, set)
Esempio n. 51
0
    def __new__(cls, base_dims, derived_dims=[], dimensional_dependencies={}, name=None, descr=None):
        dimensional_dependencies = dict(dimensional_dependencies)

        if (name is not None) or (descr is not None):
            SymPyDeprecationWarning(
                deprecated_since_version="1.2",
                issue=13336,
                useinstead="do not define a `name` or `descr`",
            ).warn()

        def parse_dim(dim):
            if isinstance(dim, str):
                dim = Dimension(Symbol(dim))
            elif isinstance(dim, Dimension):
                pass
            elif isinstance(dim, Symbol):
                dim = Dimension(dim)
            else:
                raise TypeError("%s wrong type" % dim)
            return dim

        base_dims = [parse_dim(i) for i in base_dims]
        derived_dims = [parse_dim(i) for i in derived_dims]

        for dim in base_dims:
            dim = dim.name
            if (dim in dimensional_dependencies
                and (len(dimensional_dependencies[dim]) != 1 or
                dimensional_dependencies[dim].get(dim, None) != 1)):
                raise IndexError("Repeated value in base dimensions")
            dimensional_dependencies[dim] = Dict({dim: 1})

        def parse_dim_name(dim):
            if isinstance(dim, Dimension):
                return dim.name
            elif isinstance(dim, str):
                return Symbol(dim)
            elif isinstance(dim, Symbol):
                return dim
            else:
                raise TypeError("unrecognized type %s for %s" % (type(dim), dim))

        for dim in dimensional_dependencies.keys():
            dim = parse_dim(dim)
            if (dim not in derived_dims) and (dim not in base_dims):
                derived_dims.append(dim)

        def parse_dict(d):
            return Dict({parse_dim_name(i): j for i, j in d.items()})

        # Make sure everything is a SymPy type:
        dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in
                                    dimensional_dependencies.items()}

        for dim in derived_dims:
            if dim in base_dims:
                raise ValueError("Dimension %s both in base and derived" % dim)
            if dim.name not in dimensional_dependencies:
                # TODO: should this raise a warning?
                dimensional_dependencies[dim.name] = Dict({dim.name: 1})

        base_dims.sort(key=default_sort_key)
        derived_dims.sort(key=default_sort_key)

        base_dims = Tuple(*base_dims)
        derived_dims = Tuple(*derived_dims)
        dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()})
        obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies)
        return obj
Esempio n. 52
0
 def __new__(cls, process, state_space):
     if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)):
         raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain "
                             "support StochasticStateSpaceOf.")
     state_space = _set_converter(state_space)
     return Basic.__new__(cls, process, state_space)
Esempio n. 53
0
 def __new__(cls, sym, dim=None):
     sym, dim = _symbol_converter(sym), _sympify(dim)
     if dim.is_integer == False:
         raise ValueError("Dimension of the random matrices must be "
                          "integers, received %s instead." % (dim))
     return Basic.__new__(cls, sym, dim)
Esempio n. 54
0
 def __new__(cls, process, matrix):
     if not isinstance(process, ContinuousMarkovChain):
         raise ValueError("Currently only ContinuousMarkovChain "
                             "support GeneratorMatrixOf.")
     matrix = _matrix_checks(matrix)
     return Basic.__new__(cls, process, matrix)
Esempio n. 55
0
 def __new__(cls, symbol, set):
     assert symbol.is_Symbol
     return Basic.__new__(cls, symbol, set)
Esempio n. 56
0
 def __new__(cls, *args):
     r = cls.eval(args)
     if isinstance(r, Basic):
         return r
     return Basic.__new__(cls, *r)
Esempio n. 57
0
 def __new__(cls, *args):
     args = map(sympify, args)
     return Basic.__new__(cls, *args)
Esempio n. 58
0
 def __new__(cls, symbol, set):
     if not isinstance(set, FiniteSet):
         set = FiniteSet(*set)
     return Basic.__new__(cls, symbol, set)
Esempio n. 59
0
 def __new__(cls, sym, state_space=S.Reals, gen_mat=None):
     sym = _symbol_converter(sym)
     state_space = _set_converter(state_space)
     if gen_mat != None:
         gen_mat = _matrix_checks(gen_mat)
     return Basic.__new__(cls, sym, state_space, gen_mat)
Esempio n. 60
0
 def __new__(cls, lamda, base_set):
     return Basic.__new__(cls, lamda, base_set)